Bibliography#

[1]

Tetsuo Yamamoto, O Mousis, A Kouchi, and T Yamamotot. Cosmoglaciology: evolution of ice in interstellar space and the early solar system chemical t heories on t he origin of comet s tet suo yamamot o const raint s on t he format ion of comet s from d/h rat ios measured in h2o and hcn @ pergamon cosmoglaciology: evolution of ice in interstellar space and the early solar system. Crystal Growth and Charact, 30:83–108, 1995.

[2]

missing journal in Caselli2022

[3]

Alexey Potapov, Cornelia Jäger, and Thomas Henning. Ice coverage of dust grains in cold astrophysical environments. Physical Review Letters, 6 2020. doi:10.1103/PhysRevLett.124.221103.

[4]

missing journal in Burton1935

[5]

Thomas Loerting, Katrin Winkel, Markus Seidl, Marion Bauer, Christian Mitterdorfer, Philip H. Handle, Christoph G. Salzmann, Erwin Mayer, John L. Finney, and Daniel T. Bowron. How many amorphous ices are there? Physical Chemistry Chemical Physics, 13:8783–8794, 5 2011. doi:10.1039/c0cp02600j.

[6]

K. Winkel, D. T. Bowron, T. Loerting, E. Mayer, and J. L. Finney. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction. Journal of Chemical Physics, 2009. doi:10.1063/1.3139007.

[7]

missing journal in Walrafen1972

[8]

missing booktitle in Aida2019

[9]

Dai Akase and Misako Aida. Distribution of topologically distinct isomers of water clusters and dipole moments of constituent water molecules at finite atmospheric temperatures. Journal of Physical Chemistry A, 118:7911–7924, 8 2014. doi:10.1021/jp504854f.

[10]

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Ann Carine Vandaele, Nikolai F. Zobov, Afaf R. Al Derzi, Csaba Fábri, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Lorenzo Lodi, and Irina I. Mizus. Iupac critical evaluation of the rotational-vibrational spectra of water vapor, part iii: energy levels and transition wavenumbers for h216o. Journal of Quantitative Spectroscopy and Radiative Transfer, 117:29–58, 2013. doi:10.1016/j.jqsrt.2012.10.002.

[11]

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Michel R. Carleer, Attila G. Császár, Robert R. Gamache, Joseph T. Hodges, Alain Jenouvrier, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Robert A. Toth, Ann Carine Vandaele, Nikolai F. Zobov, Ludovic Daumont, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Semen N. Mikhailenko, and Sergei V. Shirin. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part i-energy levels and transition wavenumbers for h217o and h218o. Journal of Quantitative Spectroscopy and Radiative Transfer, 110:573–596, 2009. doi:10.1016/j.jqsrt.2009.02.014.

[12]

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Robert A. Toth, Ann Carine Vandaele, Nikolai F. Zobov, Sophie Fally, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Shui Ming Hu, Semen N. Mikhailenko, and Boris A. Voronin. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part ii. energy levels and transition wavenumbers for hd16o, hd17o, and hd18o. Journal of Quantitative Spectroscopy and Radiative Transfer, 111:2160–2184, 2010. doi:10.1016/j.jqsrt.2010.06.012.

[13]

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Ann Carine Vandaele, Nikolai F. Zobov, Nóra Dénes, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Shui Ming Hu, Tamás Szidarovszky, and Irina A. Vasilenko. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part iv. energy levels and transition wavenumbers for d216o, d217o, and d218o. Journal of Quantitative Spectroscopy and Radiative Transfer, 142:93–108, 2014. doi:10.1016/j.jqsrt.2014.03.019.

[14]

A Novak. Hydrogen bonding in solids. correlation of spectroscopic and crystallographic data*. Plenary lecture, 1973.

[15]

Paul A Giguere. Bifurcated hydrogen bonds in water. Journal of Raman Spectroscopy, 1984.

[16]

Giguère A and Paul A. The bifurcated hydrogen-bond model of water and amorphous ice. Journal of Chemical Physics, 1987. doi:10.1063/1.452845.

[17]

Shinji Saito and Iwao Ohmine. Fifth-order two-dimensional raman spectroscopy of liquid water, crystalline ice lh and amorphous ices: sensitivity to anharmonic dynamics and local hydrogen bond network structure. Journal of Chemical Physics, 2006. doi:10.1063/1.2232254.

[18]

Anamika Mukhopadhyay, William T.S. Cole, and Richard J. Saykally. The water dimer i: experimental characterization. Chemical Physics Letters, 633:13–26, 5 2015. doi:10.1016/j.cplett.2015.04.016.

[19]

Anamika Mukhopadhyay, Sotiris S. Xantheas, and Richard J. Saykally. The water dimer ii: theoretical investigations. Chemical Physics Letters, 700:163–175, 5 2018. doi:10.1016/j.cplett.2018.03.057.

[20]

Keiichi Ohno, Mari Okimura, Nobuyuki Akai, and Yukiteru Katsumoto. The effect of cooperative hydrogen bonding on the oh stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 7:3005–3014, 8 2005. doi:10.1039/b506641g.

[21]

Klaus B. Møller, Rossend Rey, and James T. Hynes. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. Journal of Physical Chemistry A, 108:1275–1289, 2 2004. doi:10.1021/jp035935r.

[22]

Arnon Millo, Yosef Raichlin, and Abraham Katzir. Mid-infrared fiber-optic attenuated total reflection spectroscopy of the solid-liquid phase transition of water. APPLIED SPECTROSCOPY, 2005.

[23]

Diedrich A. Schmidt and Kazushi Miki. Structural correlations in liquid water: a new interpretation of ir spectroscopy. Journal of Physical Chemistry A, 111:10119–10122, 10 2007. doi:10.1021/jp074737n.

[24]

Mino Yang and J. L. Skinner. Signatures of coherent vibrational energy transfer in ir and raman line shapes for liquid water. Physical Chemistry Chemical Physics, 12:982–991, 2010. doi:10.1039/b918314k.

[25]

Robert J. Meier. On art and science in curve-fitting vibrational spectra. Vibrational Spectroscopy, 39:266–269, 10 2005. doi:10.1016/j.vibspec.2005.03.003.

[26]

George Malenkov. Liquid water and ices: understanding the structure and physical properties. Journal of Physics Condensed Matter, 2009. doi:10.1088/0953-8984/21/28/283101.

[27]

Vassiliy Lubchenko and Peter G. Wolynes. Theory of structural glasses and supercooled liquids. Annual Review of Physical Chemistry, 58:235–266, 2007. doi:10.1146/annurev.physchem.58.032806.104653.

[28]

Wayne D. Kaplan and Yaron Kauffmann. Structural order in liquids induced by interfaces with crystals. Annual Review of Materials Research, 36:1–48, 2006. doi:10.1146/annurev.matsci.36.020105.104035.

[29]

F. Li and J. L. Skinner. Infrared and raman line shapes for ice ih. ii. h2o and d 2o. Journal of Chemical Physics, 12 2010. doi:10.1063/1.3516460.

[30]

Mary Jane Shultz. Ice surfaces. Annual Review of Physical Chemistry, 2017. URL: https://doi.org/10.1146/annurev-physchem-, doi:10.1146/annurev-physchem.

[31]

E. Dartois, J.A. Noble, N. Ysard, K. Demyk, and M. Chabot. Influence of grain growth on co2 ice spectroscopic profiles. modelling for dense cores and disks. Astronomy & Astrophysics, 10 2022. doi:10.1051/0004-6361/202243929.

[32]

Karin I. Öberg, A. C.Adwin Boogert, Klaus M. Pontoppidan, Saskia Van Den Broek, Ewine F. Van Dishoeck, Sandrine Bottinelli, Geoffrey A. Blake, and Neal J. Evans. The spitzer ice legacy: ice evolution from cores to protostars. Astrophysical Journal, 10 2011. doi:10.1088/0004-637X/740/2/109.

[33]

Alexey Potapov, Jeroen Bouwman, Cornelia Jäger, and Thomas Henning. Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium. Nature Astronomy, 5:78–85, 1 2021. doi:10.1038/s41550-020-01214-x.

[34]

A C A Boogert, K M Pontoppidan, C Knez, F Lahuis, J Kessler-Silacci, E F Van Dishoeck, G A Blake, J.-C Augereau, S E Bisschop, S Bottinelli, T Y Brooke, J Brown, A Crapsi, N J Evans Ii, H J Fraser, V Geers, T L Huard, J K Jørgensen, L E Allen, P M Harvey, D W Koerner, L G Mundy, D L Padgett, A I Sargent, and K R Stapelfeldt. The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. i. h 2 o and the 5y8 m bands 1,2. The Astrophysical Journal, 2008. URL: http://ssc.spitzer.caltech.edu.

[35]

missing journal in McClure2023

[36]

Gary B. Hansen and Thomas B. McCord. Amorphous and crystalline ice on the galilean satellites: a balance between thermal and radiolytic processes. Journal of Geophysical Research: Planets, 1 2004. doi:10.1029/2003je002149.

[37]

G. Danger, A. Ruf, T. Javelle, J. Maillard, V. Vinogradoff, C. Afonso, I. Schmitz-Afonso, L. Remusat, Z. Gabelica, and P. Schmitt-Kopplin. The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites. Astronomy & Astrophysics, 9 2022. doi:10.1051/0004-6361/202244191.

[38]

Thérèse Encrenaz. Water in the solar system. Annual Review of Astronomy and Astrophysics, 46:57–87, 2008. doi:10.1146/annurev.astro.46.060407.145229.

[39]

Robert H Brown and Dale P Cruikshank. Determination of the composition and state of icy surfaces in the outer solar system 1. Annu. Rev. Earth Planet. Sci, 25:243–77, 1997. URL: www.annualreviews.org.

[40]

Kathrin Altwegg, Hans Balsiger, and Stephen A Fuselier. Cometary chemistry and the origin of icy solar system bodies: the view after rosetta. Annual Review of Astronomy and Astrophysics, 2019. URL: https://doi.org/10.1146/annurev-astro-091918-, doi:10.1146/annurev-astro-091918.

[41]

Gianrico Filacchione, Fabrizio Capaccioni, Mauro Ciarniello, Andrea Raponi, Federico Tosi, Maria Cristina De Sanctis, Stéphane Erard, Dominique Bockelée Morvan, Cedric Leyrat, Gabriele Arnold, Bernard Schmitt, Eric Quirico, Giuseppe Piccioni, Alessandra Migliorini, Maria Teresa Capria, Ernesto Palomba, Priscilla Cerroni, Andrea Longobardo, Antonella Barucci, Sonia Fornasier, Robert W. Carlson, Ralf Jaumann, Katrin Stephan, Lyuba V. Moroz, David Kappel, Batiste Rousseau, Sergio Fonti, Francesca Mancarella, Daniela Despan, and Mathilde Faure. The global surface composition of 67p/cg nucleus by rosetta/virtis. (i) prelanding mission phase. Icarus, 274:334–349, 8 2016. doi:10.1016/j.icarus.2016.02.055.

[42]

G. Filacchione, M. C. De Sanctis, F. Capaccioni, A. Raponi, F. Tosi, M. Ciarniello, P. Cerroni, G. Piccioni, M. T. Capria, E. Palomba, G. Bellucci, S. Erard, D. Bockelee-Morvan, C. Leyrat, G. Arnold, M. A. Barucci, M. Fulchignoni, B. Schmitt, E. Quirico, R. Jaumann, K. Stephan, A. Longobardo, V. Mennella, A. Migliorini, E. Ammannito, J. Benkhoff, J. P. Bibring, A. Blanco, M. I. Blecka, R. Carlson, U. Carsenty, L. Colangeli, M. Combes, M. Combi, J. Crovisier, P. Drossart, T. Encrenaz, C. Federico, U. Fink, S. Fonti, W. H. Ip, P. Irwin, E. Kuehrt, Y. Langevin, G. Magni, T. McCord, L. Moroz, S. Mottola, V. Orofino, U. Schade, F. Taylor, D. Tiphene, G. P. Tozzi, P. Beck, N. Biver, L. Bonal, J. Ph Combe, D. Despan, E. Flamini, M. Formisano, S. Fornasier, A. Frigeri, D. Grassi, M. S. Gudipati, D. Kappel, F. Mancarella, K. Markus, F. Merlin, R. Orosei, G. Rinaldi, M. Cartacci, A. Cicchetti, S. Giuppi, Y. Hello, F. Henry, S. Jacquinod, J. M. Reess, R. Noschese, R. Politi, and G. Peter. Exposed water ice on the nucleus of comet 67p/churyumov-gerasimenko. Nature, 529:368–372, 1 2016. doi:10.1038/nature16190.

[43]

J A Paquette, C Engrand, M Hilchenbach, N Fray, O J Stenzel, J Silen, J Rynö, and J Kissel. The oxygen isotopic composition (18o/16o) in the dust of comet 67p/churyumov-gerasimenko measured by cosima on-board rosetta. Monthly Notices of the Royal Astronomical Society, 477:3836–3844, 7 2018. URL: https://academic.oup.com/mnras/article/477/3/3836/4931762, doi:10.1093/mnras/sty560.

[44]

J. A. Paquette, N. Fray, A. Bardyn, C. Engrand, C. M.O.D. Alexander, S. Siljeström, H. Cottin, S. Merouane, R. Isnard, O. J. Stenzel, H. Fischer, J. Rynö, J. Kissel, and M. Hilchenbach. D/h in the refractory organics of comet 67p/churyumov-gerasimenko measured by rosetta/cosima. Monthly Notices of the Royal Astronomical Society, 504:4940–4951, 7 2021. doi:10.1093/mnras/stab1028.

[45]

Don Brownlee. The stardust mission: analyzing samples from the edge of the solar system. Annual Review of Earth and Planetary Sciences, 42:179–205, 2014. doi:10.1146/annurev-earth-050212-124203.

[46]

A. C.Adwin Boogert, Perry A. Gerakines, and Douglas C.B. Whittet. Observations of the icy universe. Annual Review of Astronomy and Astrophysics, 53:541–581, 8 2015. doi:10.1146/annurev-astro-082214-122348.

[47]

B. T. Draine. Interstellar dust grains. Annual Review of Astronomy and Astrophysics, 41:241–289, 2003. doi:10.1146/annurev.astro.41.011802.094840.

[48]

Thomas Henning. Cosmic silicates. Annual Review of Astronomy and Astrophysics, 48:21–46, 9 2010. doi:10.1146/annurev-astro-081309-130815.

[49]

Pierre Haenecour, Jane Y. Howe, Thomas J. Zega, Sachiko Amari, Katharina Lodders, Jordi José, Kazutoshi Kaji, Takeshi Sunaoshi, and Atsushi Muto. Laboratory evidence for co-condensed oxygen- and carbon-rich meteoritic stardust from nova outbursts. Nature Astronomy, 3:626–630, 7 2019. doi:10.1038/s41550-019-0757-4.

[50]

Karin I. Oberg. Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules. Chem. Rev., 9 2016. URL: http://arxiv.org/abs/1609.03112 http://dx.doi.org/10.1021/acs.chemrev.5b00694, doi:10.1021/acs.chemrev.5b00694.

[51]

Raúl A. Baragiola. Water ice on outer solar system surfaces: basic properties and radiation effects. Planetary and Space Science, 51:953–961, 12 2003. doi:10.1016/j.pss.2003.05.007.

[52]

Lijuan Zhao, Minlong Tao, Kai Sun, Yubing Tu, Daxiao Yang, Zilong Wang, Mingxia Shi, and Junzhong Wang. Nanoclusters and amorphous ice flakes built from water dimers. Applied Surface Science, 6 2020. doi:10.1016/j.apsusc.2020.145973.

[53]

Robin T. Garrod. Three-dimensional, off-lattice monte carlo kinetics simulations of interstellar grain chemistry and ice structure. Astrophysical Journal, 12 2013. doi:10.1088/0004-637X/778/2/158.

[54]

missing journal in Cuppen2007

[55]

Perry A Gerakines, Christopher K Materese, and Reggie L Hudson. Carbon monoxide ices – a semicentennial review and update for crystalline co along with the first ir spectrum and band strength for amorphous co. Monthly Notices of the Royal Astronomical Society, 522:3145–3162, 4 2023. URL: https://academic.oup.com/mnras/article/522/2/3145/7146235, doi:10.1093/mnras/stad1164.

[56]

A. H. Narten, C. G. Venkatesh, and S. A. Rice. Diffraction pattern and structure of amorphous solid water at 10 and 77 °k. The Journal of Chemical Physics, 64:1106–1121, 1976. doi:10.1063/1.432298.

[57]

C. Austen Angell. Amorphous water. Annual Review of Physical Chemistry, 55:559–583, 2004. doi:10.1146/annurev.physchem.55.091602.094156.

[58]

Rebecca A. Carmack, Patrick D. Tribbett, and Mark J. Loeffler. Pore accessibility in amorphous solid water. The Astrophysical Journal, 942:1, 1 2023. URL: https://iopscience.iop.org/article/10.3847/1538-4357/aca76b, doi:10.3847/1538-4357/aca76b.

[59]

R. M. Mastrapa, S. A. Sandford, T. L. Roush, D. P. Cruikshank, and C. M. Dalle Ore. Optical constants of amorphous and crystalline h2o-ice: 2.5-22 μm (4000-455 cm-1) optical constants of h2o-ice. Astrophysical Journal, 701:1347–1356, 2009. doi:10.1088/0004-637X/701/2/1347.

[60]

J. E. Bertie and E. Whalley. Infrared spectra of ices ih and ic in the range 4000 to 350 cm-1. The Journal of Chemical Physics, 40:1637–1645, 1964. doi:10.1063/1.1725373.

[61]

A H Hardin and K B rvey. Temperature dependences of the ice i hydrogen bond spectzal shifts-i. the vitreous to cubic ice i phase transformation. Spectr himka Acta, 296:1139–1151, 1973.

[62]

D M Hudgins, S A Sandford, L J Allamandola, and A G G M Tielens. Mid-and far-infrared spectroscopy of ices: optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86:713–870, 1993.

[63]

Nathan Ockman. The infra-red and raman spectra of ice. Advances in Physics, 7:199–220, 1958. doi:10.1080/00018735800101227.

[64]

missing journal in Whalley1977

[65]

Alexander Rosu-Finsen, Bharvi Chikani, and Christoph G Salzmann. Thermal desorption of h2o ice: from nanoscale films to the bulk. Monthly Notices of the Royal Astronomical Society, 517:1919–1927, 10 2022. URL: https://academic.oup.com/mnras/article/517/2/1919/6747155, doi:10.1093/mnras/stac2803.

[66]

missing journal in Cazaux2014

[67]

J. B. Bossa, K. Isokoski, D. M. Paardekooper, M. Bonnin, E. P. Van Der Linden, T. Triemstra, S. Cazaux, A. G.G.M. Tielens, and H. Linnartz. Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations. Astronomy and Astrophysics, 1 2014. doi:10.1051/0004-6361/201322549.

[68]

missing journal in Ediger1996

[69]

P. Jenniskens and D. F Blake. The structural changes of water ice i during warmup. Lunar and Planetary Science Conference, 1994.

[70]

Peter Jenniskens and David F Blake. Structural transitions in amorphous water ice and astrophysical implications. Source: Science, New Series, 265:753–756, 1994.

[71]

C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neuefeind, B. Tomberli, and P. A. Egelstaff. Structural studies of several distinct metastable forms of amorphous ice. Science, 2002. doi:https://doi.org/10.1126/science.1074178.

[72]

J. Paul Devlin. Structure, spectra, and mobility of low-pressure ices: ice i, amorphous solid water, and clathrate hydrates at t < 150 k. Journal of Geophysical Research: Planets, 106:33333–33349, 12 2001. doi:10.1029/2000JE001301.

[73]

Hailong Li, Aigerim Karina, Marjorie Ladd-Parada, Alexander Späh, Fivos Perakis, Chris Benmore, and Katrin Amann-Winkel. Long-range structures of amorphous solid water. Journal of Physical Chemistry B, 125:13320–13328, 12 2021. doi:10.1021/acs.jpcb.1c06899.

[74]

G. P. Johari, Andreas Hallbrucker, and Erwin Mayer. The dielectric behavior of vapor-deposited amorphous solid water and of its crystalline forms. The Journal of Chemical Physics, 95:2955–2964, 1991. doi:10.1063/1.460897.

[75]

Andreas Hallbrucker, Erwin Mayer, and G P Johari. Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. a comparison with hyperquenched glassy water. J. Phys. Chem, 93:4986–4990, 1989.

[76]

F. Dulieu, L. Amiaud, E. Congiu, J. H. Fillion, E. Matar, A. Momeni, V. Pirronello, and J. L. Lemaire. Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astronomy and Astrophysics, 2010. doi:10.1051/0004-6361/200912079.

[77]

R. M. Mastrapa, M. P. Bernstein, S. A. Sandford, T. L. Roush, D. P. Cruikshank, and C. M.Dalle Ore. Optical constants of amorphous and crystalline h2o-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 197:307–320, 9 2008. doi:10.1016/j.icarus.2008.04.008.

[78]

Michael S. Bergren, Daniel Schuh, Mark G. Sceats, and Stuart A. Rice. The oh stretching region infrared spectra of low density amorphous solid water and polycrystalline ice ih. The Journal of Chemical Physics, 69:3477–3482, 1978. doi:10.1063/1.437080.

[79]

W Hagen, A G Gm Tielens, and J M Greenberg. The infrared spectra of amorphous solid water and ice i, between 10 and 140 k. Chemical Phylcs, 56:367–379, 1981.

[80]

Belén Maté, Yamilet Rodríguez-Lazcano, and Victor J. Herrero. Morphology and crystallization kinetics of compact (hgw) and porous (asw) amorphous water ice. Physical Chemistry Chemical Physics, 14:10595–10602, 8 2012. doi:10.1039/c2cp41597f.

[81]

Jennifer A. Noble, Herma M. Cuppen, Stephane Coussan, Britta Redlich, and Sergio Ioppolo. Infrared resonant vibrationally induced restructuring of amorphous solid water. Journal of Physical Chemistry C, 124:20864–20873, 9 2020. doi:10.1021/acs.jpcc.0c04463.

[82]

Stephane Coussan, Jennifer A. Noble, Herma M. Cuppen, Britta Redlich, and Sergio Ioppolo. Irfel selective irradiation of amorphous solid water: from dangling to bulk modes. The Journal of Physical Chemistry A, 126:2262–2269, 4 2022. URL: https://pubs.acs.org/doi/10.1021/acs.jpca.2c00054, doi:10.1021/acs.jpca.2c00054.

[83]

J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, and S. Coussan. Unveiling the surface structure of amorphous solid water via selective infrared irradiation of oh stretching modes. Journal of Physical Chemistry Letters, 5:826–829, 3 2014. doi:10.1021/jz5000066.

[84]

J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, and S. Coussan. Ir selective irradiations of amorphous solid water dangling modes: irradiation vs annealing effects. Journal of Physical Chemistry C, 118:20488–20495, 9 2014. doi:10.1021/jp506943k.

[85]

missing journal in Essmann1995

[86]

Valentin M. Silonov and Vasilii V. Chubarov. Amorphouse ice. Radioelectronics. Nanosystems. Information Technologies., 7:55–67, 6 2015. URL: http://en.rensit.ru/vypuski/article/141/7(1)-55-67e.pdf, doi:10.17725/rensit.2015.07.055.

[87]

missing journal in Klug1999

[88]

Y. C. Wu, J. Jiang, S. J. Wang, A. Kallis, and P. G. Coleman. Porosity and crystallization of water ice films studied by positron and positronium annihilation. Physical Review B - Condensed Matter and Materials Physics, 8 2011. doi:10.1103/PhysRevB.84.064123.

[89]

A. Kouchi, T. Hama, Y. Kimura, H. Hidaka, R. Escribano, and N. Watanabe. Matrix sublimation method for the formation of high-density amorphous ice. Chemical Physics Letters, 658:287–292, 8 2016. doi:10.1016/j.cplett.2016.06.066.

[90]

P Jenniskens and D F Blake. Crystallization of amorphous water ice in the solar system. THE ASTROPHYSICAL JOURNAL, 473:1104–1113, 1996.

[91]

D. J. Safarik, R. J. Meyer, and C. B. Mullins. Thickness dependent crystallization kinetics of sub-micron amorphous solid water films. Journal of Chemical Physics, 118:4660–4671, 3 2003. doi:10.1063/1.1543980.

[92]

K.P Stevenson, Greg. A Kimmel, Z Dohnalek, R Scott Smith, and Kay Bruce D. Controlling the morphology of amorphous solid water. Science, 1999.

[93]

R Scott Smith, C Huang, E K L Wong, and Bruce D Kay. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surface Science, pages 13–18, 1996.

[94]

Z. Dohnálek, Greg A. Kimmel, Ryan L. Ciolli, K. P. Stevenson, R. Scott Smith, and Bruce D. Kay. The effect of the underlying substrate on the crystallization kinetics of dense amorphous solid water films. Journal of Chemical Physics, 112:5932–5941, 4 2000. doi:10.1063/1.481166.

[95]

A. Parmentier, J. J. Shephard, G. Romanelli, R. Senesi, C. G. Salzmann, and C. Andreani. Evolution of hydrogen dynamics in amorphous ice with density. Journal of Physical Chemistry Letters, 6:2038–2042, 6 2015. doi:10.1021/acs.jpclett.5b00711.

[96]

missing journal in Manca2002

[97]

missing journal in Mate2012b

[98]

K. Isokoski, J. B. Bossa, T. Triemstra, and H. Linnartz. Porosity and thermal collapse measurements of h2o, ch 3oh, co2, and h2o:co2 ices. Physical Chemistry Chemical Physics, 16:3456–3465, 2 2014. doi:10.1039/c3cp54481h.

[99]

J. B. Bossa, K. Isokoski, M. S. De Valois, and H. Linnartz. Thermal collapse of porous interstellar ice. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201219340.

[100]

S. Cazaux, J. B. Bossa, H. Linnartz, and A. G.G.M. Tielens. Pore evolution in interstellar ice analogues: simulating the effects of temperature increase. Astronomy and Astrophysics, 1 2015. doi:10.1051/0004-6361/201424466.

[101]

Óscar Gálvez, Belén Maté, Víctor J. Herrero, and Rafael Escribano. Trapping and adsorption of co2 in amorphous ice: a ftir study. Icarus, 197:599–605, 10 2008. doi:10.1016/j.icarus.2008.05.016.

[102]

S. Malyk, G. Kumi, H. Reisler, and C. Wittig. Trapping and release of co2 guest molecules by amorphous ice. Journal of Physical Chemistry A, 111:13365–13370, 12 2007. doi:10.1021/jp074083i.

[103]

U. Raut, M. Famá, B. D. Teolis, and R. A. Baragiola. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. Journal of Chemical Physics, 2007. doi:10.1063/1.2796166.

[104]

Caixia Bu, Catherine A. Dukes, and Raúl A. Baragiola. Spontaneous cracking of amorphous solid water films and the dependence on microporous structure. Applied Physics Letters, 11 2016. doi:10.1063/1.4967789.

[105]

R Scott Smith, Z Dohn Alek, Greg A Kimmel, K P Stevenson, and Bruce D Kay. The self-diffusivity of amorphous solid water near 150 k. Chemical Physics, pages 291–305, 2000. URL: www.elsevier.nl/locate/chemphys.

[106]

P. Ghesquière, T. Mineva, D. Talbi, P. Theulé, J. A. Noble, and T. Chiavassa. Diffusion of molecules in the bulk of a low density amorphous ice from molecular dynamics simulations. Physical Chemistry Chemical Physics, 17:11455–11468, 5 2015. doi:10.1039/c5cp00558b.

[107]

Robin J. Speedy, Pablo G. Debenedetti, R. Scott Smith, C. Huang, and Bruce D. Kay. The evaporation rate, free energy, and entropy of amorphous water at 150 k. Journal of Chemical Physics, 105:240–244, 1996. doi:10.1063/1.471869.

[108]

Caixia Bu, Jianming Shi, Ujjwal Raut, Emily H. Mitchell, and Raúl A. Baragiola. Effect of microstructure on spontaneous polarization in amorphous solid water films. Journal of Chemical Physics, 4 2015. doi:10.1063/1.4916322.

[109]

Jacob J. Shephard, John S.O. Evans, and Christoph G. Salzmann. Structural relaxation of low-density amorphous ice upon thermal annealing. Journal of Physical Chemistry Letters, 4:3672–3676, 11 2013. doi:10.1021/jz4020103.

[110]

V. Sadtchenko, K. Knutsen, Clayton F. Giese, and W. Ronald Gentry. Interactions of ccl4 with thin d2o amorphous ice films, part i: a nanoscale probe of ice morphology. Journal of Physical Chemistry B, 104:2511–2521, 3 2000. doi:10.1021/jp9926185.

[111]

V. Sadtchenko, K. Knutsen, C. F. Giese, and W. Ronald Gentry. Interactions of ccl4 with thin d2o amorphous ice films. 2. variation of desorption kinetics with ice preparation conditions and evidence for distinct structures of low-density amorphous ice. Journal of Physical Chemistry B, 104:4894–4902, 5 2000. doi:10.1021/jp993787s.

[112]

C. Manca, C. Martin, and P. Roubin. Volumetric and infrared measurements on amorphous ice structure. Chemical Physics, 300:53–62, 5 2004. doi:10.1016/j.chemphys.2004.01.008.

[113]

David R Barker, Mark Wilson, Paul A Madden, Nikolai N Medvedev, and Alfons Geiger. Voids in the h-bonded network of water and their manifestation in the structure factor. PHYSICAL REVIEW E, 2000.

[114]

Z. Dohnálek, Greg A. Kimmel, Patrick Ayotte, R. Scott Smith, and Bruce D. Kay. The deposition angle-dependent density of amorphous solid water films. Journal of Chemical Physics, 118:364–372, 1 2003. doi:10.1063/1.1525805.

[115]

Belén Maté, Alicia Medialdea, Miguel A. Moreno, Rafael Escribano, and Victor J. Herrero. Experimental studies of amorphous and polycrystalline ice films using ft-rairs. Journal of Physical Chemistry B, 107:11098–11108, 10 2003. doi:10.1021/jp0344343.

[116]

Ryutaro Souda. Probing surface properties and glass - liquid transition of amorphous solid water: temperature-programmed tof-sims and tpd studies of adsorption/desorption of hexane. Journal of Physical Chemistry B, 109:21879–21883, 11 2005. doi:10.1021/jp054047o.

[117]

Ph Parent, C. Laffon, C. Mangeney, F. Bournel, and M. Tronc. Structure of the water ice surface studied by x-ray absorption spectroscopy at the o k-edge. Journal of Chemical Physics, 117:10842–10851, 12 2002. doi:10.1063/1.1519256.

[118]

Christina M. Tonauer, Lilli-Ruth Fidler, Johannes Giebelmann, Keishiro Yamashita, and Thomas Loerting. Nucleation and growth of crystalline ices from amorphous ices. The Journal of Chemical Physics, 158:141001, 4 2023. URL: https://pubs.aip.org/aip/jcp/article/2877917, doi:10.1063/5.0143343.

[119]

Ryutaro Souda. Kinetics of the glass-liquid transition of water. Chemical Physics Letters, 415:146–149, 10 2005. doi:10.1016/j.cplett.2005.08.126.

[120]

Y. C. Wu, A. Kallis, J. Jiang, and P. G. Coleman. Structural and phase changes in amorphous solid water films revealed by positron beam spectroscopy. Physical Review Letters, 8 2010. doi:10.1103/PhysRevLett.105.066103.

[121]

Kuniaki Harada, Toshiki Sugimoto, Fumiaki Kato, Kazuya Watanabe, and Yoshiyasu Matsumoto. Thickness dependent homogeneous crystallization of ultrathin amorphous solid water films. Physical Chemistry Chemical Physics, 22:1963–1973, 2020. doi:10.1039/c9cp05981d.

[122]

Chunqing Yuan, R. Scott Smith, and Bruce D. Kay. Communication: distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water. Journal of Chemical Physics, 1 2017. doi:10.1063/1.4974492.

[123]

D. J. Safarik and C. B. Mullins. A new methodology and model for characterization of nucleation and growth kinetics in solids. Journal of Chemical Physics, 119:12510–12524, 12 2003. doi:10.1063/1.1616551.

[124]

Anastasiia Garkul and Vladimir Stegailov. Molecular dynamics analysis of elastic properties and new phase formation during amorphous ices transformations. Scientific Reports, 12 2022. doi:10.1038/s41598-022-17666-2.

[125]

Ellen H.G. Backus, Mihail L. Grecea, Aart W. Kleyn, and Mischa Bonn. Surface crystallization of amorphous solid water. Physical Review Letters, 6 2004. doi:10.1103/PhysRevLett.92.236101.

[126]

Z. Dohnálek, Ryan L. Ciolli, Greg A. Kimmel, K. P. Stevenson, R. Scott Smith, and Bruce D. Kay. Substrate induced crystallization of amorphous solid water at low temperatures. Journal of Chemical Physics, 110:5489–5492, 3 1999. doi:10.1063/1.478446.

[127]

J. Stern and T. Loerting. Crystallisation of the amorphous ices in the intermediate pressure regime. Scientific Reports, 12 2017. doi:10.1038/s41598-017-03583-2.

[128]

Mischa Bonn and Ellen H.G. Backus. Geometrical vs. statistical models for describing phase transition kinetics in thin films. Physical Chemistry Chemical Physics, 6:5516–5522, 12 2004. doi:10.1039/b411047a.

[129]

Dietmar Paschek, Andreas Rüppert, and Alfons Geiger. Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled tip4p-ew model water. ChemPhysChem, 9:2737–2741, 12 2008. doi:10.1002/cphc.200800539.

[130]

Ryutaro Souda and Tadaaki Nagao. A temperature programmed desorption study of interactions between water and hydrophobes at cryogenic temperatures. Physical Chemistry Chemical Physics, 24:16900–16907, 7 2022. doi:10.1039/d2cp01580c.

[131]

R. L. Hudson, M. H. Moore, and L. L. Raines. Ethane ices in the outer solar system: spectroscopy and chemistry. Icarus, 203:677–680, 10 2009. doi:10.1016/j.icarus.2009.06.026.

[132]

R. L. Hudson, P. A. Gerakines, and M. H. Moore. Infrared spectra and optical constants of astronomical ices: ii. ethane and ethylene. Icarus, 243:148–157, 11 2014. doi:10.1016/j.icarus.2014.09.001.

[133]

Emmanuel Dartois and François Langlet. Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, 3 2021. doi:10.1016/j.icarus.2020.114255.

[134]

Hugh H. Richardson, Paul J. Wooldridge, and J. Paul Devlin. Ft-ir spectra of vacuum deposited clathrate hydrates of oxirane h 2s, thf, and ethane. The Journal of Chemical Physics, 83:4387–4394, 1985. doi:10.1063/1.449055.

[135]

G Herzberg. Historical remarks on the discovery of interstellar molecules. Journal of the Royal Astronomical Society of Canada, 1988.

[136]

Pascale Ehrenfreund and Steven B Charnley. Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early earth. Annu. Rev. Astron. Astrophys., 2000. URL: www.annualreviews.org.

[137]

Radha Gobinda Bhuin, Rabin Rajan J. Methikkalam, Bhalamurugan Sivaraman, and Thalappil Pradeep. Interaction of acetonitrile with water-ice: an infrared spectroscopic study. Journal of Physical Chemistry C, 119:11524–11532, 5 2015. doi:10.1021/jp512607v.

[138]

Scott A. Sandford, Michel Nuevo, Michel Nuevo, Partha P. Bera, Partha P. Bera, and Timothy J. Lee. Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chemical Reviews, 120:4616–4659, 6 2020. doi:10.1021/acs.chemrev.9b00560.

[139]

Eric Herbst and Ewine F. Van Dishoeck. Complex organic interstellar molecules. Annual Review of Astronomy and Astrophysics, 47:427–480, 9 2009. doi:10.1146/annurev-astro-082708-101654.

[140]

Nigel J. Mason, Anita Dawes, Philip D. Holtom, Robin J. Mukerji, Michael P. Davis, Bhalamurugan Sivaraman, Ralf I. Kaiser, Søren V. Hoffmann, and David A. Shaw. Vuv spectroscopy and photo-processing of astrochemical ices: an experimental study. Faraday Discussions, 133:311–329, 2006. doi:10.1039/b518088k.

[141]

J M Hollis, F J Lovas, and P R Jewell. Interstellar glycolaldehyde: the first sugar. The Astrophysical Journal, 540:107–110, 2000.

[142]

S. Zeng, D. Quénard, I. Jiménez-Serra, J. Martín-Pintado, V. M. Rivilla, L. Testi, and R. Martín-Doménech. First detection of the pre-biotic molecule glycolonitrile (hoch2cn) in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 1 2019. URL: http://arxiv.org/abs/1901.02576 http://dx.doi.org/10.1093/mnrasl/slz002, doi:10.1093/mnrasl/slz002.

[143]

Ningjing Jiang, Mattia Melosso, Silvia Alessandrini, Luca Bizzocchi, Marie-Aline Martin-Drumel, Olivier Pirali, and Cristina Puzzarini. Insights into the molecular structure and infrared spectrum of the prebiotic species aminoacetonitrile. Physical Chemistry Chemical Physics, 2023. doi:10.1039/d2cp05179f.

[144]

Yasuhiro Oba, Yoshinori Takano, Hiroshi Naraoka, Naoki Watanabe, and Akira Kouchi. Nucleobase synthesis in interstellar ices. Nature Communications, 12 2019. doi:10.1038/s41467-019-12404-1.

[145]

Joshua H. Marks, Jia Wang, N. Fabian Kleimeier, Andrew M. Turner, André K. Eckhardt, and Ralf I. Kaiser. Prebiotic synthesis and isomerization in interstellar analog ice: glycinal, acetamide, and their enol tautomers. Angewandte Chemie International Edition, 3 2023. doi:10.1002/anie.202218645.

[146]

Thomas K. Henning and Serge A. Krasnokutski. Experimental characterization of the energetics of low-temperature surface reactions. Nature Astronomy, 3:568–573, 6 2019. doi:10.1038/s41550-019-0729-8.

[147]

D. Qasim, G. Fedoseev, K. J. Chuang, J. He, S. Ioppolo, E. F. van Dishoeck, and H. Linnartz. An experimental study of the surface formation of methane in interstellar molecular clouds. Nature Astronomy, 4:781–785, 8 2020. doi:10.1038/s41550-020-1054-y.

[148]

M Hepp and M Herman. Effective rotation-vibration parameters for the 8 and 4 12 bands of ethane. Journal of Molecular Spectroscopy, 194:87–94, 1999. URL: http://www.idealibrary.com.

[149]

K. I. Öberg, H. J. Fraser, A. C.A. Boogert, S. E. Bisschop, G. W. Fuchs, E. F. Van Dishoeck, and H. Linnartz. Effects of co2 on h2o band profiles and band strengths in mixed h2o:co2 ices. Astronomy and Astrophysics, 462:1187–1198, 2 2007. doi:10.1051/0004-6361:20065881.

[150]

Herma M. Cuppen, Jennifer A. Noble, Stephane Coussan, Britta Redlich, and Sergio Ioppolo. Energy transfer and restructuring in amorphous solid water upon consecutive irradiation. The Journal of Physical Chemistry A, 126:8859–8870, 12 2022. URL: https://pubs.acs.org/doi/10.1021/acs.jpca.2c06314, doi:10.1021/acs.jpca.2c06314.