Bibliography#

[1]Tetsuo Yamamoto, O Mousis, A Kouchi, and T Yamamotot. Cosmoglaciology: evolution of ice in interstellar space and the early solar system chemical t heories on t he origin of comet s tet suo yamamot o const raint s on t he format ion of comet s from d/h rat ios measured in h2o and hcn @ pergamon cosmoglaciology: evolution of ice in interstellar space and the early solar system. Crystal Growth and Charact, 30:83–108, 1995.
[2]Robert H Brown and Dale P Cruikshank. Determination of the composition and state of icy surfaces in the outer solar system 1. Annu. Rev. Earth Planet. Sci, 25:243–77, 1997. URL: www.annualreviews.org.
[3]A. H. Narten, C. G. Venkatesh, and S. A. Rice. Diffraction pattern and structure of amorphous solid water at 10 and 77 Β°k. The Journal of Chemical Physics, 64:1106–1121, 1976. doi:10.1063/1.432298.
[4]J. E. Bertie and E. Whalley. Infrared spectra of ices ih and ic in the range 4000 to 350 cm-1. The Journal of Chemical Physics, 40:1637–1645, 1964. doi:10.1063/1.1725373.
[5]A H Hardin and K B rvey. Temperature dependences of the ice i hydrogen bond spectzal shifts-i. the vitreous to cubic ice i phase transformation. Spectr himka Acta, 296:1139–1151, 1973.
[6]D M Hudgins, S A Sandford, L J Allamandola, and A G G M Tielens. Mid-and far-infrared spectroscopy of ices: optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86:713–870, 1993.
[7]Nathan Ockman. The infra-red and raman spectra of ice. Advances in Physics, 7:199–220, 1958. doi:10.1080/00018735800101227.
[8]missing journal in Whalley1977
[9]missing journal in Ediger1996
[10]missing journal in Essmann1995
[11]P Jenniskens and D F Blake. Crystallization of amorphous water ice in the solar system. THE ASTROPHYSICAL JOURNAL, 473:1104–1113, 1996.
[12]R Scott Smith, C Huang, E K L Wong, and Bruce D Kay. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surface Science, 1996.
[13]Robin J. Speedy, Pablo G. Debenedetti, R. Scott Smith, C. Huang, and Bruce D. Kay. The evaporation rate, free energy, and entropy of amorphous water at 150 k. Journal of Chemical Physics, 105:240–244, 1996. doi:10.1063/1.471869.
[14]Hugh H. Richardson, Paul J. Wooldridge, and J. Paul Devlin. Ft-ir spectra of vacuum deposited clathrate hydrates of oxirane h 2s, thf, and ethane. The Journal of Chemical Physics, 83:4387–4394, 1985. doi:10.1063/1.449055.
[15]missing journal in Mekler1994
[16]M Podolak and Y Mekler. Dirty ice grains in the protoplanetary nebula. Planet. Space Sri, 45:1401–1406, 1997.
[17]S J Weidenschilling. The origin of comets in the solar nebula: a unified model. ICARUS, 127:290–306, 1997.
[18]Robert G Smith, K Sellgren, and Alan T Tokunaga. Absorption features in the 3 micron spectra of protostars. The Astrophysical Journal, 344:413–426, 1989.
[19]C Dominik. The physics of dust coagulation and the structure of dust aggregates in space. THE ASTROPHYSICAL JOURNAL, 480:647–673, 1997.
[20]Frank G Bridges, Kimberley D Supulver, D N C Lin, Roberta Knight, and Mario Zafra. Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. ICARUS, 123:422–435, 1996.
[21]M. A. Lange and T. J. Ahrens. The dynamic tensile strength of ice and ice-silicate mixtures. Journal of Geophysical Research, 88:1197–1208, 1983. doi:10.1029/JB088iB02p01197.
[22]Kimberley D Supulver, Frank G Bridges, Salvador Tiscareno, John Lievore, and D N C Lin. The sticking properties of water frost produced under various ambient conditions. ICARUS, 129:539–554, 1997.
[23]JamΜ€es Dilley and Darren Crawford. Mass dependence of energy loss in collisions of icy spheres: an experimental study. Journal of Geophysical Research: Planets, 101:9267–9270, 1996. doi:10.1029/96JE00116.
[24]DAISUKE KUROIWA. A study of ice sintering. Tellus, 13:252–259, 5 1961. doi:10.1111/j.2153-3490.1961.tb00082.x.
[25]S J Weidenschilling. Dust to planetesimals" settling and coagulation in the solar nebula. ICARUS, 44:172–189, 1980.
[26]J. Dubochet and A. W. McDowall. Vitrification of pure water for electron microscopy. Journal of Microscopy, 124:3–4, 1981. doi:10.1111/j.1365-2818.1981.tb02483.x.
[27]W. B. Bald and A. B. Crowley. On defining the thermal history of cells during the freezing of biological materials. Journal of Microscopy, 117:395–409, 1979. doi:10.1111/j.1365-2818.1979.tb04696.x.
[28]W. B. Bald. The relative efficiency of cryogenic fluids used in the rapid quench cooling of biological samples. Journal of Microscopy, 134:261–270, 1984. doi:10.1111/j.1365-2818.1984.tb02519.x.
[29]T Kuroda and R Lacmann. Growth kinetics of ice from the vapour phase and its growth forms. Journal of Crystal Growth, 56:189–205, 1982.
[30]Andreas Hallbrucker, Erwin Mayer, and G P Johari. Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. a comparison with hyperquenched glassy water. J. Phys. Chem, 93:4986–4990, 1989.