Bibliography#

1

The Turing Way Community. The turing way: a handbook for reproducible, ethical and collaborative research. none, 11 2022. URL: https://zenodo.org/record/6909298, doi:10.5281/ZENODO.6909298.

2

Tetsuo Yamamoto, O Mousis, A Kouchi, and T Yamamotot. Cosmoglaciology: evolution of ice in interstellar space and the early solar system chemical t heories on t he origin of comet s tet suo yamamot o const raint s on t he format ion of comet s from d/h rat ios measured in h2o and hcn @ pergamon cosmoglaciology: evolution of ice in interstellar space and the early solar system. Crystal Growth and Charact, 30:83–108, 1995.

3

missing journal in Caselli2022

4

Alexey Potapov, Cornelia Jäger, and Thomas Henning. Ice coverage of dust grains in cold astrophysical environments. Physical Review Letters, 6 2020. doi:10.1103/PhysRevLett.124.221103.

5

missing journal in Burton1935

6

Thomas Loerting, Katrin Winkel, Markus Seidl, Marion Bauer, Christian Mitterdorfer, Philip H. Handle, Christoph G. Salzmann, Erwin Mayer, John L. Finney, and Daniel T. Bowron. How many amorphous ices are there? Physical Chemistry Chemical Physics, 13:8783–8794, 5 2011. doi:10.1039/c0cp02600j.

7

K. Winkel, D. T. Bowron, T. Loerting, E. Mayer, and J. L. Finney. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction. Journal of Chemical Physics, 2009. doi:10.1063/1.3139007.

8

Hailong Li, Aigerim Karina, Marjorie Ladd-Parada, Alexander Späh, Fivos Perakis, Chris Benmore, and Katrin Amann-Winkel. Long-range structures of amorphous solid water. Journal of Physical Chemistry B, 125:13320–13328, 12 2021. doi:10.1021/acs.jpcb.1c06899.

9

G. P. Johari, Andreas Hallbrucker, and Erwin Mayer. The dielectric behavior of vapor-deposited amorphous solid water and of its crystalline forms. The Journal of Chemical Physics, 95:2955–2964, 1991. doi:10.1063/1.460897.

10

Andreas Hallbrucker, Erwin Mayer, and G P Johari. Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. a comparison with hyperquenched glassy water. J. Phys. Chem, 93:4986–4990, 1989.

11

F. Dulieu, L. Amiaud, E. Congiu, J. H. Fillion, E. Matar, A. Momeni, V. Pirronello, and J. L. Lemaire. Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astronomy and Astrophysics, 2010. doi:10.1051/0004-6361/200912079.

12

D M Hudgins, S A Sandford, L J Allamandola, and A G G M Tielens. Mid-and far-infrared spectroscopy of ices: optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86:713–870, 1993.

13

R. M. Mastrapa, S. A. Sandford, T. L. Roush, D. P. Cruikshank, and C. M. Dalle Ore. Optical constants of amorphous and crystalline h2o-ice: 2.5-22 μm (4000-455 cm-1) optical constants of h2o-ice. Astrophysical Journal, 701:1347–1356, 2009. doi:10.1088/0004-637X/701/2/1347.

14

R. M. Mastrapa, M. P. Bernstein, S. A. Sandford, T. L. Roush, D. P. Cruikshank, and C. M.Dalle Ore. Optical constants of amorphous and crystalline h2o-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 197:307–320, 9 2008. doi:10.1016/j.icarus.2008.04.008.

15

Michael S. Bergren, Daniel Schuh, Mark G. Sceats, and Stuart A. Rice. The oh stretching region infrared spectra of low density amorphous solid water and polycrystalline ice ih. The Journal of Chemical Physics, 69:3477–3482, 1978. doi:10.1063/1.437080.

16

J. E. Bertie and E. Whalley. Infrared spectra of ices ih and ic in the range 4000 to 350 cm-1. The Journal of Chemical Physics, 40:1637–1645, 1964. doi:10.1063/1.1725373.

17

W Hagen, A G Gm Tielens, and J M Greenberg. The infrared spectra of amorphous solid water and ice i, between 10 and 140 k. Chemical Phylcs, 56:367–379, 1981.

18

Belén Maté, Yamilet Rodríguez-Lazcano, and Victor J. Herrero. Morphology and crystallization kinetics of compact (hgw) and porous (asw) amorphous water ice. Physical Chemistry Chemical Physics, 14:10595–10602, 8 2012. doi:10.1039/c2cp41597f.

19

Jennifer A. Noble, Herma M. Cuppen, Stephane Coussan, Britta Redlich, and Sergio Ioppolo. Infrared resonant vibrationally induced restructuring of amorphous solid water. Journal of Physical Chemistry C, 124:20864–20873, 9 2020. doi:10.1021/acs.jpcc.0c04463.

20

Stephane Coussan, Jennifer A. Noble, Herma M. Cuppen, Britta Redlich, and Sergio Ioppolo. Irfel selective irradiation of amorphous solid water: from dangling to bulk modes. The Journal of Physical Chemistry A, 126:2262–2269, 4 2022. URL: https://pubs.acs.org/doi/10.1021/acs.jpca.2c00054, doi:10.1021/acs.jpca.2c00054.

21

J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, and S. Coussan. Unveiling the surface structure of amorphous solid water via selective infrared irradiation of oh stretching modes. Journal of Physical Chemistry Letters, 5:826–829, 3 2014. doi:10.1021/jz5000066.

22

J. A. Noble, C. Martin, H. J. Fraser, P. Roubin, and S. Coussan. Ir selective irradiations of amorphous solid water dangling modes: irradiation vs annealing effects. Journal of Physical Chemistry C, 118:20488–20495, 9 2014. doi:10.1021/jp506943k.

23

missing journal in Walrafen1972

24

missing booktitle in Aida2019

25

Dai Akase and Misako Aida. Distribution of topologically distinct isomers of water clusters and dipole moments of constituent water molecules at finite atmospheric temperatures. Journal of Physical Chemistry A, 118:7911–7924, 8 2014. doi:10.1021/jp504854f.

26

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Ann Carine Vandaele, Nikolai F. Zobov, Afaf R. Al Derzi, Csaba Fábri, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Lorenzo Lodi, and Irina I. Mizus. Iupac critical evaluation of the rotational-vibrational spectra of water vapor, part iii: energy levels and transition wavenumbers for h216o. Journal of Quantitative Spectroscopy and Radiative Transfer, 117:29–58, 2013. doi:10.1016/j.jqsrt.2012.10.002.

27

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Michel R. Carleer, Attila G. Császár, Robert R. Gamache, Joseph T. Hodges, Alain Jenouvrier, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Robert A. Toth, Ann Carine Vandaele, Nikolai F. Zobov, Ludovic Daumont, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Semen N. Mikhailenko, and Sergei V. Shirin. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part i-energy levels and transition wavenumbers for h217o and h218o. Journal of Quantitative Spectroscopy and Radiative Transfer, 110:573–596, 2009. doi:10.1016/j.jqsrt.2009.02.014.

28

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Robert A. Toth, Ann Carine Vandaele, Nikolai F. Zobov, Sophie Fally, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Shui Ming Hu, Semen N. Mikhailenko, and Boris A. Voronin. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part ii. energy levels and transition wavenumbers for hd16o, hd17o, and hd18o. Journal of Quantitative Spectroscopy and Radiative Transfer, 111:2160–2184, 2010. doi:10.1016/j.jqsrt.2010.06.012.

29

Jonathan Tennyson, Peter F. Bernath, Linda R. Brown, Alain Campargue, Attila G. Császár, Ludovic Daumont, Robert R. Gamache, Joseph T. Hodges, Olga V. Naumenko, Oleg L. Polyansky, Laurence S. Rothman, Ann Carine Vandaele, Nikolai F. Zobov, Nóra Dénes, Alexander Z. Fazliev, Tibor Furtenbacher, Iouli E. Gordon, Shui Ming Hu, Tamás Szidarovszky, and Irina A. Vasilenko. Iupac critical evaluation of the rotational-vibrational spectra of water vapor. part iv. energy levels and transition wavenumbers for d216o, d217o, and d218o. Journal of Quantitative Spectroscopy and Radiative Transfer, 142:93–108, 2014. doi:10.1016/j.jqsrt.2014.03.019.

30

A Novak. Hydrogen bonding in solids. correlation of spectroscopic and crystallographic data*. Plenary lecture, 1973.

31

Paul A Giguere. Bifurcated hydrogen bonds in water. Journal of Raman Spectroscopy, 1984.

32

Shinji Saito and Iwao Ohmine. Fifth-order two-dimensional raman spectroscopy of liquid water, crystalline ice lh and amorphous ices: sensitivity to anharmonic dynamics and local hydrogen bond network structure. Journal of Chemical Physics, 2006. doi:10.1063/1.2232254.

33

Anamika Mukhopadhyay, William T.S. Cole, and Richard J. Saykally. The water dimer i: experimental characterization. Chemical Physics Letters, 633:13–26, 5 2015. doi:10.1016/j.cplett.2015.04.016.

34

Anamika Mukhopadhyay, Sotiris S. Xantheas, and Richard J. Saykally. The water dimer ii: theoretical investigations. Chemical Physics Letters, 700:163–175, 5 2018. doi:10.1016/j.cplett.2018.03.057.

35

Keiichi Ohno, Mari Okimura, Nobuyuki Akai, and Yukiteru Katsumoto. The effect of cooperative hydrogen bonding on the oh stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 7:3005–3014, 8 2005. doi:10.1039/b506641g.

36

Klaus B. Møller, Rossend Rey, and James T. Hynes. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. Journal of Physical Chemistry A, 108:1275–1289, 2 2004. doi:10.1021/jp035935r.

37

Arnon Millo, Yosef Raichlin, and Abraham Katzir. Mid-infrared fiber-optic attenuated total reflection spectroscopy of the solid-liquid phase transition of water. APPLIED SPECTROSCOPY, 2005.

38

Diedrich A. Schmidt and Kazushi Miki. Structural correlations in liquid water: a new interpretation of ir spectroscopy. Journal of Physical Chemistry A, 111:10119–10122, 10 2007. doi:10.1021/jp074737n.

39

Mino Yang and J. L. Skinner. Signatures of coherent vibrational energy transfer in ir and raman line shapes for liquid water. Physical Chemistry Chemical Physics, 12:982–991, 2010. doi:10.1039/b918314k.

40

Robert J. Meier. On art and science in curve-fitting vibrational spectra. Vibrational Spectroscopy, 39:266–269, 10 2005. doi:10.1016/j.vibspec.2005.03.003.

41

F. Li and J. L. Skinner. Infrared and raman line shapes for ice ih. ii. h2o and d 2o. Journal of Chemical Physics, 12 2010. doi:10.1063/1.3516460.

42

E. Dartois, J.A. Noble, N. Ysard, K. Demyk, and M. Chabot. Influence of grain growth on co2 ice spectroscopic profiles. modelling for dense cores and disks. Astronomy & Astrophysics, 10 2022. doi:10.1051/0004-6361/202243929.

43

Karin I. Öberg, A. C.Adwin Boogert, Klaus M. Pontoppidan, Saskia Van Den Broek, Ewine F. Van Dishoeck, Sandrine Bottinelli, Geoffrey A. Blake, and Neal J. Evans. The spitzer ice legacy: ice evolution from cores to protostars. Astrophysical Journal, 10 2011. doi:10.1088/0004-637X/740/2/109.

44

Alexey Potapov, Jeroen Bouwman, Cornelia Jäger, and Thomas Henning. Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium. Nature Astronomy, 5:78–85, 1 2021. doi:10.1038/s41550-020-01214-x.

45

A C A Boogert, K M Pontoppidan, C Knez, F Lahuis, J Kessler-Silacci, E F Van Dishoeck, G A Blake, J.-C Augereau, S E Bisschop, S Bottinelli, T Y Brooke, J Brown, A Crapsi, N J Evans Ii, H J Fraser, V Geers, T L Huard, J K Jørgensen, L E Allen, P M Harvey, D W Koerner, L G Mundy, D L Padgett, A I Sargent, and K R Stapelfeldt. The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. i. h 2 o and the 5y8 m bands 1,2. The Astrophysical Journal, 2008. URL: http://ssc.spitzer.caltech.edu.

46

missing journal in McClure2023

47

Gary B. Hansen and Thomas B. McCord. Amorphous and crystalline ice on the galilean satellites: a balance between thermal and radiolytic processes. Journal of Geophysical Research: Planets, 1 2004. doi:10.1029/2003je002149.

48

G. Danger, A. Ruf, T. Javelle, J. Maillard, V. Vinogradoff, C. Afonso, I. Schmitz-Afonso, L. Remusat, Z. Gabelica, and P. Schmitt-Kopplin. The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites. Astronomy & Astrophysics, 9 2022. doi:10.1051/0004-6361/202244191.

49

A. H. Narten, C. G. Venkatesh, and S. A. Rice. Diffraction pattern and structure of amorphous solid water at 10 and 77 °k. The Journal of Chemical Physics, 64:1106–1121, 1976. doi:10.1063/1.432298.

50

C. Austen Angell. Amorphous water. Annual Review of Physical Chemistry, 55:559–583, 2004. doi:10.1146/annurev.physchem.55.091602.094156.

51

Rebecca A. Carmack, Patrick D. Tribbett, and Mark J. Loeffler. Pore accessibility in amorphous solid water. The Astrophysical Journal, 942:1, 1 2023. URL: https://iopscience.iop.org/article/10.3847/1538-4357/aca76b, doi:10.3847/1538-4357/aca76b.

52

A H Hardin and K B rvey. Temperature dependences of the ice i hydrogen bond spectzal shifts-i. the vitreous to cubic ice i phase transformation. Spectr himka Acta, 296:1139–1151, 1973.

53

Nathan Ockman. The infra-red and raman spectra of ice. Advances in Physics, 7:199–220, 1958. doi:10.1080/00018735800101227.

54

missing journal in Whalley1977

55

Alexander Rosu-Finsen, Bharvi Chikani, and Christoph G Salzmann. Thermal desorption of h2o ice: from nanoscale films to the bulk. Monthly Notices of the Royal Astronomical Society, 517:1919–1927, 10 2022. URL: https://academic.oup.com/mnras/article/517/2/1919/6747155, doi:10.1093/mnras/stac2803.

56

missing journal in Cazaux2014

57

J. B. Bossa, K. Isokoski, D. M. Paardekooper, M. Bonnin, E. P. Van Der Linden, T. Triemstra, S. Cazaux, A. G.G.M. Tielens, and H. Linnartz. Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations. Astronomy and Astrophysics, 1 2014. doi:10.1051/0004-6361/201322549.

58

P Jenniskens and D F Blake. Crystallization of amorphous water ice in the solar system. THE ASTROPHYSICAL JOURNAL, 473:1104–1113, 1996.

59

D. J. Safarik, R. J. Meyer, and C. B. Mullins. Thickness dependent crystallization kinetics of sub-micron amorphous solid water films. Journal of Chemical Physics, 118:4660–4671, 3 2003. doi:10.1063/1.1543980.

60

K.P Stevenson, Greg. A Kimmel, Z Dohnalek, R Scott Smith, and Kay Bruce D. Controlling the morphology of amorphous solid water. Science, 1999.

61

R Scott Smith, C Huang, E K L Wong, and Bruce D Kay. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surface Science, pages 13–18, 1996.

62

Z. Dohnálek, Greg A. Kimmel, Ryan L. Ciolli, K. P. Stevenson, R. Scott Smith, and Bruce D. Kay. The effect of the underlying substrate on the crystallization kinetics of dense amorphous solid water films. Journal of Chemical Physics, 112:5932–5941, 4 2000. doi:10.1063/1.481166.

63

Chunqing Yuan, R. Scott Smith, and Bruce D. Kay. Communication: distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water. Journal of Chemical Physics, 1 2017. doi:10.1063/1.4974492.

64

Ellen H.G. Backus, Mihail L. Grecea, Aart W. Kleyn, and Mischa Bonn. Surface crystallization of amorphous solid water. Physical Review Letters, 6 2004. doi:10.1103/PhysRevLett.92.236101.

65

Ryutaro Souda and Tadaaki Nagao. A temperature programmed desorption study of interactions between water and hydrophobes at cryogenic temperatures. Physical Chemistry Chemical Physics, 24:16900–16907, 7 2022. doi:10.1039/d2cp01580c.

66

R. L. Hudson, M. H. Moore, and L. L. Raines. Ethane ices in the outer solar system: spectroscopy and chemistry. Icarus, 203:677–680, 10 2009. doi:10.1016/j.icarus.2009.06.026.

67

R. L. Hudson, P. A. Gerakines, and M. H. Moore. Infrared spectra and optical constants of astronomical ices: ii. ethane and ethylene. Icarus, 243:148–157, 11 2014. doi:10.1016/j.icarus.2014.09.001.

68

Emmanuel Dartois and François Langlet. Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, 3 2021. doi:10.1016/j.icarus.2020.114255.

69

Hugh H. Richardson, Paul J. Wooldridge, and J. Paul Devlin. Ft-ir spectra of vacuum deposited clathrate hydrates of oxirane h 2s, thf, and ethane. The Journal of Chemical Physics, 83:4387–4394, 1985. doi:10.1063/1.449055.

70

J M Hollis, F J Lovas, and P R Jewell. Interstellar glycolaldehyde: the first sugar. The Astrophysical Journal, 540:107–110, 2000.

71

S. Zeng, D. Quénard, I. Jiménez-Serra, J. Martín-Pintado, V. M. Rivilla, L. Testi, and R. Martín-Doménech. First detection of the pre-biotic molecule glycolonitrile (hoch2cn) in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 1 2019. URL: http://arxiv.org/abs/1901.02576 http://dx.doi.org/10.1093/mnrasl/slz002, doi:10.1093/mnrasl/slz002.

72

M Hepp and M Herman. Effective rotation-vibration parameters for the 8 and 4 12 bands of ethane. Journal of Molecular Spectroscopy, 194:87–94, 1999. URL: http://www.idealibrary.com.

73

K. I. Öberg, H. J. Fraser, A. C.A. Boogert, S. E. Bisschop, G. W. Fuchs, E. F. Van Dishoeck, and H. Linnartz. Effects of co2 on h2o band profiles and band strengths in mixed h2o:co2 ices. Astronomy and Astrophysics, 462:1187–1198, 2 2007. doi:10.1051/0004-6361:20065881.

74

Herma M. Cuppen, Jennifer A. Noble, Stephane Coussan, Britta Redlich, and Sergio Ioppolo. Energy transfer and restructuring in amorphous solid water upon consecutive irradiation. The Journal of Physical Chemistry A, 126:8859–8870, 12 2022. URL: https://pubs.acs.org/doi/10.1021/acs.jpca.2c06314, doi:10.1021/acs.jpca.2c06314.