Bibliography#

[1]

Alex N. Halliday and Robin M. Canup. The accretion of planet earth. Nature Reviews Earth and Environment, 2022. doi:10.1038/s43017-022-00370-0.

[2]

Víctor J. Herrero, Miguel Jiménez-Redondo, Ramón J. Peláez, Belén Maté, and Isabel Tanarro. Structure and evolution of interstellar carbonaceous dust. insights from the laboratory. Frontiers in Astronomy and Space Sciences, 12 2022. doi:10.3389/fspas.2022.1083288.

[3]

missing booktitle in Williams2000

[4]

Wolfgang Steinicke, William Herschel, Caroline Herschel, John Herschel, Johann Georg Hagen, and Angelo Secchi. William herschel's 'hole in the sky' and the discovery of dark nebulae. Journal of Astronomical History and Heritage, 19:305–326, 2016. URL: www.spacerip.com/women-.

[5]

Catherine Zucker, Alyssa A. Goodman, João Alves, Shmuel Bialy, Michael Foley, Joshua S. Speagle, Josefa Groβschedl, Douglas P. Finkbeiner, Andreas Burkert, Diana Khimey, and Cameren Swiggum. Star formation near the sun is driven by expansion of the local bubble. Nature, 601:334–337, 1 2022. doi:10.1038/s41586-021-04286-5.

[6]

E I Chiang and P Goldreich. Spectral energy distributions of t tauri stars with passive circumstellar disks. THE ASTROPHYSICAL JOURNAL, 490:368–376, 1997.

[7]

Elena Redaelli, Stefano Bovino, Patricio Sanhueza, Kaho Morii, Giovanni Sabatini, Paola Caselli, Andrea Giannetti, and Shanghuo Li. The core population and kinematics of a massive clump at early stages: an atacama large millimeter/submillimeter array view. The Astrophysical Journal, 936:169, 9 2022. doi:10.3847/1538-4357/ac85b4.

[8]

Ágnes Kóspál, Péter Ábrahám, Lindsey Diehl, Andrea Banzatti, Jeroen Bouwman, Lei Chen, Fernando Cruz-Sáenz de Miera, Joel D. Green, Thomas Henning, and Christian Rab. Jwst/miri spectroscopy of the disk of the young eruptive star ex lup in quiescence. The Astrophysical Journal Letters, 945:L7, 3 2023. URL: https://iopscience.iop.org/article/10.3847/2041-8213/acb58a, doi:10.3847/2041-8213/acb58a.

[9]

A. Schneeberger, O. Mousis, A. Aguichine, and J. I Lunine. Evolution of the reservoirs of volatiles in the protosolar nebula. Astronomy & Astrophysics, 2 2023. doi:10.1051/0004-6361/202244670.

[10]

missing journal in Boyden2022

[11]

C. R. O'dell, Zheng Wen, and Xihai Hu. Discovery of new objects in the orion nebula on hst images: shocks, compact sources, and protoplanetary disks. The Astrophysical Journal, 1993.

[12]

C. R O'dell and Zheng A Wen. Postrefurbishment mission hubble space telescope images of the core of the orion nebula: proplyds, herbig-haro objects, and measurements of a circumstellar disk. The Astrophysical Journal, 1994.

[13]

K R Bell, P M Cassen, H H Klahr, and Th Henning. The structure and appearance of protostellar accretion disks : limits on disk flaring. THE ASTROPHYSICAL JOURNAL, 486:372–387, 1997.

[14]

C. P. Dullemond and J. D. Monnier. The inner regions of protoplanetary disks. Annual Review of Astronomy and Astrophysics, 48:205–239, 9 2010. doi:10.1146/annurev-astro-081309-130932.

[15]

missing journal in Desch2007

[16]

T Paneque-Carreño, A. Miotello, E.F. van Dishoeck, B. Tabone, A. Izquierdo, and S. Facchini. Directly tracing the vertical stratification of molecules in protoplanetary disks. Astronomy & Astrophysics, 1 2022. doi:10.1051/0004-6361/202244428.

[17]

A. A. Schegerer and S. Wolf. Spatially resolved detection of crystallized water ice in a t tauri object. Astronomy and Astrophysics, 517:A87, 7 2010. doi:10.1051/0004-6361/200911849.

[18]

Y Mekler and M Podolak. Formation of amorphous ice in the protoplanetary nebula. Planetary and Space Science, 1994.

[19]

M Podolak and Y Mekler. Dirty ice grains in the protoplanetary nebula. Planet. Space Sri, 45:1401–1406, 1997.

[20]

Lucas A. Cieza, Simon Casassus, John Tobin, Steven P. Bos, Jonathan P. Williams, Sebastian Perez, Zhaohuan Zhu, Claudio Caceres, Hector Canovas, Michael M. Dunham, Antonio Hales, Jose L. Prieto, David A. Principe, Matthias R. Schreiber, Dary Ruiz-Rodriguez, and Alice Zurlo. Imaging the water snow-line during a protostellar outburst. Nature, 535:258–261, 7 2016. doi:10.1038/nature18612.

[21]

missing journal in Min2010

[22]

Ke Zhang, Geoffrey A. Blake, and Edwin A. Bergin. Evidence of fast pebble growth near condensation fronts in the hl tau protoplanetary disk. Astrophysical Journal Letters, 6 2015. doi:10.1088/2041-8205/806/1/L7.

[23]

Satoshi Okuzumi, Hidekazu Tanaka, Hiroshi Kobayashi, and Koji Wada. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophysical Journal, 6 2012. doi:10.1088/0004-637X/752/2/106.

[24]

Karin I. Öberg, Ruth Murray-Clay, and Edwin A. Bergin. The effects of snowlines on c/o in planetary atmospheres. Astrophysical Journal Letters, 12 2011. doi:10.1088/2041-8205/743/1/L16.

[25]

L. Podio, I. Kamp, C. Codella, S. Cabrit, B. Nisini, C. Dougados, G. Sandell, J. P. Williams, L. Testi, W. F. Thi, P. Woitke, R. Meijerink, M. Spaans, G. Aresu, F. Ménard, and C. Pinte. Water vapor in the protoplanetary disk of dg tau. Astrophysical Journal Letters, 3 2013. doi:10.1088/2041-8205/766/1/L5.

[26]

Andrea Banzatti, Klaus M. Pontoppidan, José Pérez Chávez, Colette Salyk, Lindsey Diehl, Simon Bruderer, Gregory J. Herczeg, Andres Carmona, Ilaria Pascucci, Sean Brittain, Stanley Jensen, Sierra Grant, Ewine F. van Dishoeck, Inga Kamp, Arthur D. Bosman, Karin I. Öberg, Geoff A. Blake, Michael R. Meyer, Eric Gaidos, Adwin Boogert, John T. Rayner, and Caleb Wheeler. The kinematics and excitation of infrared water vapor emission from planet-forming disks: results from spectrally resolved surveys and guidelines for jwst spectra. The Astronomical Journal, 165:72, 2 2023. URL: https://iopscience.iop.org/article/10.3847/1538-3881/aca80b, doi:10.3847/1538-3881/aca80b.

[27]

missing journal in Qi2013

[28]

A Meredith Hughes, Gaspard Duchêne, and Brenda C Matthews. Debris disks: structure, composition, and variability. Annual Review of Astronomy and Astrophysics, 2018. URL: https://doi.org/10.1146/annurev-astro-081817-, doi:10.1146/annurev-astro-081817.

[29]

András Gáspár, Schuyler Grace Wolff, George H. Rieke, Jarron M. Leisenring, Jane Morrison, Kate Y. L. Su, Kimberly Ward-Duong, Jonathan Aguilar, Marie Ygouf, Charles Beichman, Jorge Llop-Sayson, and Geoffrey Bryden. Spatially resolved imaging of the inner fomalhaut disk using jwst/miri. Nature Astronomy, 5 2023. URL: https://www.nature.com/articles/s41550-023-01962-6, doi:10.1038/s41550-023-01962-6.

[30]

missing journal in Eistrup2022

[31]

missing journal in Grant2022

[32]

missing journal in Temmink2023

[33]

Alice S. Booth, Nienke Van Der Marel, Margot Leemker, Ewine F. Van Dishoeck, and Satoshi Ohashi. A major asymmetric ice trap in a planet-forming disk: ii. prominent so and so2pointing to c/o < 1. Astronomy and Astrophysics, 7 2021. doi:10.1051/0004-6361/202141057.

[34]

Brandon S. Hensley and B. T. Draine. The astrodust+pah model: a unified description of the extinction, emission, and polarization from dust in the diffuse interstellar medium. The Astrophysical Journal, 948:55, 5 2023. URL: https://iopscience.iop.org/article/10.3847/1538-4357/acc4c2, doi:10.3847/1538-4357/acc4c2.

[35]

Hiroyuki Hirashita and Zhi Yun Li. Condition for the formation of micron-sized dust grains in dense molecular cloud cores. Monthly Notices of the Royal Astronomical Society: Letters, 9 2013. doi:10.1093/mnrasl/slt081.

[36]

E F Van Dishoeck, L E Kristensen, A O Benz, E A Bergin, P Caselli, J Cernicharo, F Herpin, M R Hogerheijde, D Johnstone, R Liseau, B Nisini, R Shipman, M Tafalla, F Van Der Tak, F Wyrowski, Y Aikawa, R Bachiller, A Baudry, M Benedettini, P Bjerkeli, G A Blake, S Bontemps, J Braine, C Brinch, S Bruderer, L Chavarría, C Codella, F Daniel, T H De Graauw, E Deul, A M Di Giorgio, C Dominik, S D Doty, M L Dubernet, P Encrenaz, H Feuchtgruber, M Fich, W Frieswijk, A Fuente, T Giannini, J R Goicoechea, F P Helmich, G J Herczeg, T Jacq, J K Jørgensen, A Karska, M J Kaufman, E Keto, B Larsson, B Lefloch, D Lis, M Marseille, C Mccoey, G Melnick, D Neufeld, M Olberg, L Pagani, O Panić, B Parise, J C Pearson, R Plume, C Risacher, D Salter, J Santiago-García, P Saraceno, P Stäuber, T A Van Kempen, R Visser, S Viti, M Walmsley, S F Wampfler, and U A Yildiz. Water in star-forming regions with the herschel space observatory (wish). i. overview of key program and first results. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 123:138–170, 2011.

[37]

M. Min, H. Canovas, G. D. Mulders, and C. U. Keller. The effects of disk and dust structure on observed polarimetric images of protoplanetary disks. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201117333.

[38]

H. Mutschke, M. Min, and A. Tamanai. Laboratory-based grain-shape models for simulating dust infrared spectra. Astronomy and Astrophysics, 504:875–882, 9 2009. doi:10.1051/0004-6361/200912267.

[39]

P. Ehrenfreund, H. J. Fraser, J. Blum, J. H.E. Cartwright, J. M. García-Ruiz, E. Hadamcik, A. C. Levasseur-Regourd, S. Price, F. Prodi, and A. Sarkissian. Physics and chemistry of icy particles in the universe: answers from microgravity. Planetary and Space Science, 51:473–494, 6 2003. doi:10.1016/S0032-0633(03)00052-7.

[40]

A. C.Adwin Boogert, Perry A. Gerakines, and Douglas C.B. Whittet. Observations of the icy universe. Annual Review of Astronomy and Astrophysics, 53:541–581, 8 2015. doi:10.1146/annurev-astro-082214-122348.

[41]

Helen J. Fraser, Mark P. Collings, and Martin R.S. McCoustra. Laboratory surface astrophysics experiment. Review of Scientific Instruments, 73:2161, 5 2002. doi:10.1063/1.1470232.

[42]

missing journal in Fukazawa2015

[43]

M. J. Iedema, M. J. Dresser, D. L. Doering, J. B. Rowland, W. P. Hess, A. A. Tsekouras, and J. P. Cowin. Ferroelectricity in water ice. Journal of Physical Chemistry B, 102:9203–9214, 11 1998. doi:10.1021/jp982549e.

[44]

Karin I. Öberg, A. C.Adwin Boogert, Klaus M. Pontoppidan, Saskia Van Den Broek, Ewine F. Van Dishoeck, Sandrine Bottinelli, Geoffrey A. Blake, and Neal J. Evans. The spitzer ice legacy: ice evolution from cores to protostars. Astrophysical Journal, 10 2011. doi:10.1088/0004-637X/740/2/109.

[45]

J. P. Bradley. Early solar nebula grains - interplanetary dust particles. Treatise on Geochemistry: Second Edition, 1:287–308, 2013. doi:10.1016/B978-0-08-095975-7.00114-5.

[46]

I. Mann, A. Czechowski, H. Kimura, M. Köhler, T. Minato, and T. Yamamoto. Physical properties of the dust in the solar system and its interrelation with small bodies. Proceedings of the International Astronomical Union, 1:41–65, 2005. doi:10.1017/S1743921305006678.

[47]

Christian Eistrup, L. Ilsedore Cleeves, and Sebastiaan Krijt. Chemical evolution in planet-forming regions with growing grains. Astronomy and Astrophysics, 11 2022. doi:10.1051/0004-6361/202243981.

[48]

S J Weidenschilling. The origin of comets in the solar nebula: a unified model. ICARUS, 127:290–306, 1997.

[49]

missing journal in Lorek2015

[50]

B. Gundlach, S. Kilias, E. Beitz, and J. Blum. Micrometer-sized ice particles for planetary-science experiments - i. preparation, critical rolling friction force, and specific surface energy. Icarus, 214:717–723, 8 2011. doi:10.1016/j.icarus.2011.05.005.

[51]

N. Oberg, S. Cazaux, I. Kamp, T.-M. Bründl, W.-F. Thi, and C. Immerzeel. Circumplanetary disk ices. ii. composition. Astronomy & Astrophysics, 4 2023. doi:10.1051/0004-6361/202245592.

[52]

T. Birnstiel, M. Fang, and A. Johansen. Dust evolution and the formation of planetesimals. Space Science Reviews, 205:41–75, 12 2016. doi:10.1007/s11214-016-0256-1.

[53]

Min Li, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu, and Jason H. Steffen. Dust condensation in evolving discs and the composition of planetary building blocks. Monthly Notices of the Royal Astronomical Society, 495:2543–2553, 5 2020. doi:10.1093/mnras/staa1149.

[54]

A. Zsom, C. W. Ormel, C. Güttler, J. Blum, and C. P. Dullemond. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?: i. mapping the zoo of laboratory collision experiments. Astronomy and Astrophysics, 4 2010. doi:10.1051/0004-6361/200912976.

[55]

C. Güttler, J. Blum, A. Zsom, C. W. Ormel, and C. P. Dullemond. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?: ii. introducing the bouncing barrier. Astronomy and Astrophysics, 4 2010. doi:10.1051/0004-6361/200912852.

[56]

F. Windmark, T. Birnstiel, C. W. Ormel, and C. P. Dullemond. Breaking through: the effects of a velocity distribution on barriers to dust growth. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201220004.

[57]

missing journal in Blum2010

[58]

Jürgen Blum and Gerhard Wurm. Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143:138–146, 1 2000. doi:10.1006/icar.1999.6234.

[59]

missing journal in Testi2014

[60]

Hiroshi Terada and Alan T. Tokunaga. Discovery of crystallized water ice in a silhouette disk in the m43 region. Astrophysical Journal, 7 2012. doi:10.1088/0004-637X/753/1/19.

[61]

Robert G Smith, K Sellgren, and Alan T Tokunaga. Absorption features in the 3 micron spectra of protostars. The Astrophysical Journal, 344:413–426, 1989.

[62]

Y. Aikawa, D. Kamuro, I. Sakon, Y. Itoh, H. Terada, J. A. Noble, K. M. Pontoppidan, H. J. Fraser, M. Tamura, R. Kandori, A. Kawamura, and M. Ueno. Akari observations of ice absorption bands towards edge-on young stellar objects. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201015999.

[63]

B. Gundlach and J. Blum. The stickiness of micrometer-sized water-ice particles. Astrophysical Journal, 1 2015. doi:10.1088/0004-637X/798/1/34.

[64]

S. Gärtner, B. Gundlach, T. F. Headen, J. Ratte, J. Oesert, S. N. Gorb, T. G. A. Youngs, D. T. Bowron, J. Blum, and H. J. Fraser. Micrometer-sized water ice particles for planetary science experiments: influence of surface structure on collisional properties. The Astrophysical Journal, 848:96, 10 2017. doi:10.3847/1538-4357/aa8c7f.

[65]

D. M. Salter, D. Heißelmann, G. Chaparro, G. Van Der Wolk, P. Reißaus, A. G. Borst, R. W. Dawson, E. De Kuyper, G. Drinkwater, K. Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. Van Der Tuijn, H. J. Fraser, and J. Blum. A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures. Review of Scientific Instruments, 2009. doi:10.1063/1.3155508.

[66]

missing journal in Weidenschilling1977

[67]

missing journal in Weidenschilling1993

[68]

Kil Byoung Chai. Dynamics of nonspherical, fractal-like water-ice particles in a plasma environment. Scientific Reports, 12 2018. doi:10.1038/s41598-018-33854-5.

[69]

Etsuko Saito and Sin Iti Sirono. Planetesimal formation by sublimation. Astrophysical Journal, 2 2011. doi:10.1088/0004-637X/728/1/20.

[70]

K. Ros and A. Johansen. Ice condensation as a planet formation mechanism. Astronomy and Astrophysics, 2013. doi:10.1051/0004-6361/201220536.

[71]

Akimasa Kataoka, Hidekazu Tanaka, Satoshi Okuzumi, and Koji Wada. Fluffy dust forms icy planetesimals by static compression. Astronomy and Astrophysics, 2013. doi:10.1051/0004-6361/201322151.

[72]

H. P. Gail. Radial mixing in protoplanetary accretion disks iv. metamorphosis of the silicate dust complex. Astronomy and Astrophysics, 413:571–591, 1 2004. doi:10.1051/0004-6361:20031554.

[73]

T. Kelling and G. Wurm. Accretion through the inner edges of protoplanetary disks by a giant solid state pump. Astrophysical Journal Letters, 9 2013. doi:10.1088/2041-8205/774/1/L1.

[74]

C Dominik. The physics of dust coagulation and the structure of dust aggregates in space. THE ASTROPHYSICAL JOURNAL, 480:647–673, 1997.

[75]

S. Krijt, C. Güttler, D. Heißelmann, C. Dominik, and A. G.G.M. Tielens. Energy dissipation in head-on collisions of spheres. Journal of Physics D: Applied Physics, 10 2013. doi:10.1088/0022-3727/46/43/435303.

[76]

Frank G Bridges, Kimberley D Supulver, D N C Lin, Roberta Knight, and Mario Zafra. Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. ICARUS, 123:422–435, 1996.

[77]

Toru Suyama, Koji Wada, Hidekazu Tanaka, and Satoshi Okuzumi. Geometric cross sections of dust aggregates and a compression model for aggregate collisions. Astrophysical Journal, 7 2012. doi:10.1088/0004-637X/753/2/115.

[78]

Minami Yasui and Masahiko Arakawa. Compaction experiments on ice-silica particle mixtures: implication for residual porosity of small icy bodies. Journal of Geophysical Research: Planets, 2009. doi:10.1029/2009JE003374.

[79]

missing journal in Guettler2009

[80]

Arati Chokshi, A. G. G. M. Tielens, and D. Hollenbach. Dust coagulation. The Astrphysical Journal, 407:806–819, 1993.

[81]

missing journal in Guettler2013

[82]

J. D. Perry, E. Gostomski, L. S. Matthews, and T. W. Hyde. The influence of monomer shape on aggregate morphologies. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201117940.

[83]

Jürgen Blum and Gerhard Wurm. Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143:138–146, 1 2000. doi:10.1006/icar.1999.6234.

[84]

C. M. Sorace, M. Y. Louge, M. D. Crozier, and V. H.C. Law. High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mechanics Research Communications, 36:364–368, 4 2009. doi:10.1016/j.mechrescom.2008.10.009.

[85]

Torsten Poppe, Ju Ž Rgen Blum1, and Thomas Henning. Analogous experiments on the stickiness of micron-sized preplanetary dust. THE ASTROPHYSICAL JOURNAL, 533:454–471, 2000.

[86]

Torsten Poppe, Ju Ž Rgen Blum, and Thomas Henning. Experiments on collisional grain charging of micron-sized preplanetary dust. THE ASTROPHYSICAL JOURNAL, 533:472–480, 2000.

[87]

Yukihiko Hasegawa, Takeru K. Suzuki, Hidekazu Tanaka, Hiroshi Kobayashi, and Koji Wada. Collisional growth and fragmentation of dust aggregates. ii. mass distribution of icy fragments. The Astrophysical Journal, 944:38, 2 2023. URL: https://iopscience.iop.org/article/10.3847/1538-4357/acadda, doi:10.3847/1538-4357/acadda.

[88]

Jürgen Blum and Gerhard Wurm. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annual Review of Astronomy and Astrophysics, 46:21–56, 2008. doi:10.1146/annurev.astro.46.060407.145152.

[89]

missing journal in Heisselmann2007

[90]

Maya Krause and Jürgen Blum. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Physical Review Letters, 7 2004. doi:10.1103/PhysRevLett.93.021103.

[91]

Jürgen Blum, Eike Beitz, Mohtashim Bukhari, Bastian Gundlach, Jan Hendrik Hagemann, Daniel Heißelmann, Stefan Kothe, Rainer Schräpler, Ingo von Borstel, and René Weidling. Laboratory drop towers for the experimental simulation of dust-aggregate collisions in the early solar system. Journal of Visualized Experiments, 6 2014. doi:10.3791/51541.

[92]

J. Deckers and J. Teiser. Macroscopic dust in protoplanetary disks - from growth to destruction. Astrophysical Journal, 12 2014. doi:10.1088/0004-637X/796/2/99.

[93]

C. W. Ormel, M. Spaans, and A. G.G.M. Tielens. Dust coagulation in protoplanetary disks: porosity matters. Astronomy and Astrophysics, 461:215–232, 1 2007. doi:10.1051/0004-6361:20065949.

[94]

Philipp Reissaus, Tomas Waldemarsson, Jürgen Blum, Dominik Clément, Isabel Llamas, Harald Mutschke, and Frank Giovane. Sticking efficiency of nanoparticles in high-velocity collisions with various target materials. Journal of Nanoparticle Research, 8:693–703, 10 2006. doi:10.1007/s11051-006-9102-9.

[95]

Jürgen Blum. Dust agglomeration. Advances in Physics, 55:881–947, 11 2006. doi:10.1080/00018730601095039.

[96]

missing journal in Wada2007

[97]

missing journal in Wada2008

[98]

Rainer Schräpler, Jürgen Blum, Alexander Seizinger, and Wilhelm Kley. The physics of protoplanetesimal dust agglomerates. vii. the low-velocity collision behavior of large dust agglomerates. Astrophysical Journal, 10 2012. doi:10.1088/0004-637X/758/1/35.

[99]

Rainer Schräpler and Jürgen Blum. The physics of protoplanetesimal dust agglomerates. vi. erosion of large aggregates as a source of micrometer-sized particles. Astrophysical Journal, 6 2011. doi:10.1088/0004-637X/734/2/108.

[100]

A. Seizinger, R. Speith, and W. Kley. Compression behavior of porous dust agglomerates. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201218855.

[101]

R. Weidling, C. Güttler, and J. Blum. Free collisions in a microgravity many-particle experiment. i. dust aggregate sticking at low velocities. Icarus, 218:688–700, 3 2012. doi:10.1016/j.icarus.2011.10.002.

[102]

E. Beitz, C. Güttler, J. Blum, T. Meisner, J. Teiser, and G. Wurm. Low-velocity collisions of centimeter-sized dust aggregates. Astrophysical Journal, 7 2011. doi:10.1088/0004-637X/736/1/34.

[103]

Stefan Kothe, Carsten Güttler, and Jürgen Blum. The physics of protoplanetesimal dust agglomerates. v. multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. Astrophysical Journal, 725:1242–1251, 12 2010. doi:10.1088/0004-637X/725/1/1242.

[104]

Jurgen Blum and Michael Munch. Blumexperimental investigations on aggregate-aggregate collisions in the early solar nebula. Icarus, 106:151–167, 1993.

[105]

Jens Teiser and Gerhard Wurm. High-velocity dust collisions: forming planetesimals in a fragmentation cascade with final accretion. Monthly Notices of the Royal Astronomical Society, 393:1584–1594, 2009. doi:10.1111/j.1365-2966.2008.14289.x.

[106]

J. Teiser and G. Wurm. Decimetre dust aggregates in protoplanetary discs. Astronomy and Astrophysics, 505:351–359, 10 2009. doi:10.1051/0004-6361/200912027.

[107]

René Weidling, Carsten Güttler, Jürgen Blum, and Frithjof Brauer. The physics of protoplanetesimal dust agglomerates. iii. compaction in multiple collisions. Astrophysical Journal, 696:2036–2043, 5 2009. doi:10.1088/0004-637X/696/2/2036.

[108]

E. Beitz, C. Güttler, R. Weidling, and J. Blum. Free collisions in a microgravity many-particle experiment - ii: the collision dynamics of dust-coated chondrules. Icarus, 218:701–706, 3 2012. doi:10.1016/j.icarus.2011.11.036.

[109]

missing journal in Deckers2016

[110]

Yuri Shimaki and Masahiko Arakawa. Experimental study on collisional disruption of highly porous icy bodies. Icarus, 218:737–750, 4 2012. doi:10.1016/j.icarus.2012.01.021.

[111]

Yuri Shimaki and Masahiko Arakawa. Low-velocity collisions between centimeter-sized snowballs: porosity dependence of coefficient of restitution for ice aggregates analogues in the solar system. Icarus, 221:310–319, 9 2012. doi:10.1016/j.icarus.2012.08.005.

[112]

Piroz Zamankhan. Simulations of collision of ice particles. Communications in Nonlinear Science and Numerical Simulation, 15:1538–1552, 6 2010. doi:10.1016/j.cnsns.2009.06.029.

[113]

C. Schäfer, R. Speith, and W. Kley. Collisions between equal-sized ice grain agglomerates. Astronomy and Astrophysics, 470:733–739, 8 2007. doi:10.1051/0004-6361:20077354.

[114]

missing journal in Hatzes1988

[115]

Manfred A Lange and Thomas J Ahrens. Impact experiments in low-temperature ice. ICARUS, 69:506–518, 1987.

[116]

missing journal in Bridges1984

[117]

Akira Kouchi, Tatsuyuki Kudo, Hideyuki Nakano, Masahiko Arakawa, Naoki Watanabe, Michiya Higa, and Norikazu Maeno. Rapid growth of asteroids owing to very sticky interstellar organic grains sin-iti sirono. The Astrophysical Journal, 566:121–124, 2002.

[118]

Grzegorz Musiolik, Jens Teiser, Tim Jankowski, and Gerhard Wurm. Ice grain collisions in comparison: co 2 , h 2 o, and their mixtures. The Astrophysical Journal, 827:63, 8 2016. doi:10.3847/0004-637x/827/1/63.

[119]

M Arakawa, M Higa, J Leliwa-Kopystyã Nski, and N Maeno. Impact cratering of granular mixture targets made of h 2 o ice-co 2 ice-pyrophylite. Planetary and Space Science, 48:1437–1446, 2000. URL: www.elsevier.nl/locate/planspasci.

[120]

Grzegorz Musiolik, Jens Teiser, Tim Jankowski, and Gerhard Wurm. Collisions of co 2 ice grains in planet formation. The Astrophysical Journal, 818:16, 2 2016. doi:10.3847/0004-637x/818/1/16.

[121]

Shin ichi Kawakami, Hitoshi Mizutani, Yasuhiko Takagi, Mineo Kumazawa, and Manabu Kato. Impact experiments on ice. Journal of Geophysical Research, 88:5806–5814, 1983. doi:10.1029/JB088iB07p05806.

[122]

Masahiko Arakawa and Daisuke Tomizuka. Ice - silicate fractionation among icy bodies due to the difference of impact strength between ice and ice-silicate mixture. Icarus, 170:193–201, 7 2004. doi:10.1016/j.icarus.2004.02.009.

[123]

Masahiko Arakawa, Jacek Leliwa-Kopystynski, and Norikazu Maeno. Impact experiments of porous icy-silicate cylindrical blocks and the implication for disruption and accumulation of small icy bodies. Icarus, 158:516–531, 2002. doi:10.1006/icar.2002.6893.

[124]

M. A. Lange and T. J. Ahrens. The dynamic tensile strength of ice and ice-silicate mixtures. Journal of Geophysical Research, 88:1197–1208, 1983. doi:10.1029/JB088iB02p01197.

[125]

Sin-iti Sirono and Haruta Ueno. Collisions between sintered icy aggregates. The Astrophysical Journal, 841:36, 5 2017. doi:10.3847/1538-4357/aa6fad.

[126]

Kimberley D Supulver, Frank G Bridges, Salvador Tiscareno, John Lievore, and D N C Lin. The sticking properties of water frost produced under various ambient conditions. ICARUS, 129:539–554, 1997.

[127]

missing journal in Heim1999

[128]

Jam̀es Dilley and Darren Crawford. Mass dependence of energy loss in collisions of icy spheres: an experimental study. Journal of Geophysical Research: Planets, 101:9267–9270, 1996. doi:10.1029/96JE00116.

[129]

Koji Wada, Hidekazu Tanaka, Satoshi Okuzumi, Hiroshi Kobayashi, Toru Suyama, Hiroshi Kimura, and Tetsuo Yamamoto. Growth efficiency of dust aggregates through collisions with high mass ratios. Astronomy and Astrophysics, 2013. doi:10.1051/0004-6361/201322259.

[130]

Michiya Higa, Masahiko Arakawa, and Norikazu Maeno. Size dependence of restitution coefficients of ice in relation to collision strength. ICARUS, 133:310–320, 1998.

[131]

Thorsten Meisner, Gerhard Wurm, Jens Teiser, and Mathias Schywek. Preplanetary scavengers: growing tall in dust collisions. Astronomy and Astrophysics, 2013. doi:10.1051/0004-6361/201322083.

[132]

Jens Teiser, Markus Küpper, and Gerhard Wurm. Impact angle influence in high velocity dust collisions during planetesimal formation. Icarus, 215:596–598, 10 2011. doi:10.1016/j.icarus.2011.07.036.

[133]

K Kendall, N Alford, and J. D. Birchall. A new method for measuring the surface energy of solids. Nature, 1987.

[134]

Jan-Martin Hertzsch. A model for surface effects in slow collisions of icy grains. Planetary and Space Science, 50:745–755, 2002. URL: www.elsevier.com/locate/pss.

[135]

missing journal in Hill2015a

[136]

missing journal in Hill2015b

[137]

R. J. Geretshauser, R. Speith, and W. Kley. Collisions of inhomogeneous pre-planetesimals. Astronomy and Astrophysics, 2011. doi:10.1051/0004-6361/201117645.

[138]

Hidekazu Tanaka, Koji Wada, Toru Suyama, and Satoshi Okuzumi. Growth of cosmic dust aggregates and reexamination of particle interaction models. Progress of Theoretical Physics Supplement, 2012. URL: http://ptps.oxfordjournals.org/.

[139]

Pascale Garaud, Farzana Meru, Marina Galvagni, and Christoph Olczak. From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. Astrophysical Journal, 2 2013. doi:10.1088/0004-637X/764/2/146.

[140]

Guillem Aumatell and Gerhard Wurm. Ice aggregate contacts at the nm-scale. Monthly Notices of the Royal Astronomical Society, 437:690–702, 2013. doi:10.1093/mnras/stt1921.

[141]

missing journal in Suyama2008

[142]

Norlkazu Maeno' and Takao Eblnuma. Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets. J. Phys. Chem, 87:4103–4110, 1983.

[143]

P. V. Hobbs and B. J. Mason. The sintering and adhesion of ice. Philosophical Magazine, 9:181–197, 1964. doi:10.1080/14786436408229184.

[144]

DAISUKE KUROIWA. A study of ice sintering. Tellus, 13:252–259, 5 1961. doi:10.1111/j.2153-3490.1961.tb00082.x.

[145]

A. Seizinger, S. Krijt, and W. Kley. Erosion of dust aggregates. Astronomy and Astrophysics, 12 2013. doi:10.1051/0004-6361/201322773.

[146]

Jordan K. Steckloff, Gal Sarid, and Brandon C. Johnson. The effects of early collisional evolution on amorphous water ice bodies. The Planetary Science Journal, 4:4, 1 2023. URL: https://iopscience.iop.org/article/10.3847/PSJ/aca75a, doi:10.3847/PSJ/aca75a.

[147]

T. Kelling, G. Wurm, and M. Köster. Experimental study on bouncing barriers in protoplanetary disks. Astrophysical Journal, 3 2014. doi:10.1088/0004-637X/783/2/111.

[148]

F. Windmark, T. Birnstiel, C. Güttler, J. Blum, C. P. Dullemond, and Th Henning. Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics, 2012. doi:10.1051/0004-6361/201118475.

[149]

A. Zsom, C. W. Ormel, C. Güttler, J. Blum, and C. P. Dullemond. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?: ii. introducing the bouncing barrier. Astronomy and Astrophysics, 4 2010. doi:10.1051/0004-6361/200912976.

[150]

S J Weidenschilling. Dust to planetesimals" settling and coagulation in the solar nebula. ICARUS, 44:172–189, 1980.

[151]

missing journal in Johansen2014

[152]

J. Blum, B. Gundlach, S. Mühle, and J. M. Trigo-Rodriguez. Comets formed in solar-nebula instabilities! - an experimental and modeling attempt to relate the activity of comets to their formation process. Icarus, 235:156–169, 2014. doi:10.1016/j.icarus.2014.03.016.

[153]

Guillem Aumatell and Gerhard Wurm. Breaking the ice: planetesimal formation at the snowline. Monthly Notices of the Royal Astronomical Society: Letters, 11 2011. doi:10.1111/j.1745-3933.2011.01126.x.

[154]

David Nesvorn´y and Nesvorn´ Nesvorn´y. Dynamical evolution of the early solar system. The Annual Review of Astronomy and Astrophysics, 2018. URL: https://doi.org/10.1146/annurev-astro-081817-, doi:10.1146/annurev-astro-081817.

[155]

Tobias Steinpilz, Kolja Joeris, Felix Jungmann, Dietrich Wolf, Lothar Brendel, Jens Teiser, Troy Shinbrot, and Gerhard Wurm. Electrical charging overcomes the bouncing barrier in planet formation. Nature Physics, 16:225–229, 2 2020. doi:10.1038/s41567-019-0728-9.

[156]

Satoshi Okuzumi, Munetake Momose, Sin-iti Sirono, Hiroshi Kobayashi, and Hidekazu Tanaka. Sintering-induced dust ring formation in protoplanetary disks: application to the hl tau disk. The Astrophysical Journal, 821:82, 4 2016. doi:10.3847/0004-637x/821/2/82.

[157]

Sin Iti Sirono. The sintering region of icy dust aggregates in a protoplanetary nebula. Astrophysical Journal, 7 2011. doi:10.1088/0004-637X/735/2/131.

[158]

Sin Iti Sirono. Planetesimal formation induced by sintering. Astrophysical Journal Letters, 6 2011. doi:10.1088/2041-8205/733/2/L41.

[159]

Christoph Burkhardt, Fridolin Spitzer, Alessandro Morbidelli, Gerrit Budde, Jan H Render, Thomas S Kruijer, and Thorsten Kleine. Terrestrial planet formation from lost inner solar system material. Sci. Adv, 7:7601, 2021. URL: https://www.science.org.

[160]

Paul Mollière, Tamara Molyarova, Bertram Bitsch, Thomas Henning, Aaron Schneider, Laura Kreidberg, Christian Eistrup, Remo Burn, Evert Nasedkin, Dmitry Semenov, Christoph Mordasini, Martin Schlecker, Kamber R. Schwarz, Sylvestre Lacour, Mathias Nowak, and Matthäus Schulik. Interpreting the atmospheric composition of exoplanets: sensitivity to planet formation assumptions. The Astrophysical Journal, 934:74, 7 2022. doi:10.3847/1538-4357/ac6a56.

[161]

Alan P. Boss. Mixing and transport of isotopic heterogeneity in the early solar system. Annual Review of Earth and Planetary Sciences, 40:23–43, 5 2012. doi:10.1146/annurev-earth-042711-105552.

[162]

Mathilde Faure, Eric Quirico, Alexandre Faure, Bernard Schmitt, Patrice Theulé, and Ulysse Marboeuf. Kinetics of hydrogen/deuterium exchanges in cometary ices. Icarus, 261:14–30, 11 2015. doi:10.1016/j.icarus.2015.08.002.

[163]

John J. Tobin, Merel L. R. van ’t Hoff, Margot Leemker, Ewine F. van Dishoeck, Teresa Paneque-Carreño, Kenji Furuya, Daniel Harsono, Magnus V. Persson, L. Ilsedore Cleeves, Patrick D. Sheehan, and Lucas Cieza. Deuterium-enriched water ties planet-forming disks to comets and protostars. Nature, 615:227–230, 3 2023. URL: https://www.nature.com/articles/s41586-022-05676-z, doi:10.1038/s41586-022-05676-z.

[164]

Larry R. Nittler and Fred Ciesla. Astrophysics with extraterrestrial materials. Annual Review of Astronomy and Astrophysics, 54:53–93, 9 2016. doi:10.1146/annurev-astro-082214-122505.

[165]

missing journal in Cuzzi2005

[166]

Edward R.D. Scott. Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences, 35:577–620, 2007. doi:10.1146/annurev.earth.35.031306.140100.

[167]

Cody Schultz, Brendan A. Anzures, Ralph E. Milliken, Taki Hiroi, and Kevin Robertson. Assessing the spatial variability of the  3 μm oh/h2o absorption feature in cm2 carbonaceous chondrites. Meteoritics and Planetary Science, 2 2023. doi:10.1111/maps.13946.

[168]

Pan Jiang, Xiaoping Chi, Qihe Zhu, Min Cheng, and Hong Gao. Strong and selective isotope effect in the vacuum ultraviolet photodissociation branching ratios of carbon monoxide. Nature Communications, 12 2019. doi:10.1038/s41467-019-11086-z.

[169]

Belén Maté, Yamilet Rodríguez-Lazcano, and Victor J. Herrero. Morphology and crystallization kinetics of compact (hgw) and porous (asw) amorphous water ice. Physical Chemistry Chemical Physics, 14:10595–10602, 8 2012. doi:10.1039/c2cp41597f.

[170]

Ryan K. P. Cryofixation of tissues for electron microscopy: a review of plunge cooling methods. Scanning Microscopy, 1992.

[171]

Peter Bruggeler and Erwin Mayer. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature, 288:569–571, 1980.

[172]

J. Dubochet and A. W. McDowall. Vitrification of pure water for electron microscopy. Journal of Microscopy, 124:3–4, 1981. doi:10.1111/j.1365-2818.1981.tb02483.x.

[173]

W. B. Bald and A. B. Crowley. On defining the thermal history of cells during the freezing of biological materials. Journal of Microscopy, 117:395–409, 1979. doi:10.1111/j.1365-2818.1979.tb04696.x.

[174]

Felix Franks. The properties of aqueous solutions at subzero temperatures. Water, 1982. doi:10.1007/978-1-4757-6952-4_3.

[175]

J. Gylys, R. Skvorcinskiene, L. Paukstaitis, M. Gylys, and A. Adomavicius. Film boiling influence on the spherical body's cooling in sub-cooled water. International Journal of Heat and Mass Transfer, 95:709–719, 4 2016. doi:10.1016/j.ijheatmasstransfer.2015.12.051.

[176]

N. R. Silvester, S. Marchese‐Ragona, and D. N. Johnston. The relative efficiency of various fluids in the rapid freezing of protozoa. Journal of Microscopy, 128:175–186, 1982. doi:10.1111/j.1365-2818.1982.tb00449.x.

[177]

W. B. Bald. The relative efficiency of cryogenic fluids used in the rapid quench cooling of biological samples. Journal of Microscopy, 134:261–270, 1984. doi:10.1111/j.1365-2818.1984.tb02519.x.

[178]

T Kuroda and R Lacmann. Growth kinetics of ice from the vapour phase and its growth forms. Journal of Crystal Growth, 56:189–205, 1982.

[179]

Erwin Mayer and Peter Bruggeler. Vitrification of pure liquid water by high pressure jet freezing. Nature, 1982.

[180]

M C Bellissent-Funel, L Bosio, A Hallbrucker, E Mayer, and R Sridi-Dorbez. X-ray and neutron scattering studies of the structure of hyperquenched glassy water. The Journal of Chemical Physics, 1992. doi:https://doi.org/10.1063/1.463254.

[181]

Andreas Hallbrucker, Erwin Mayer, and G. P. Johari. The heat capacity and glass transition of hyperquenched glassy water. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 60:179–187, 1989. doi:10.1080/13642818908211189.

[182]

missing journal in Flin2003

[183]

missing journal in Kataoka2013

[184]

B. Jost, A. Pommerol, O. Poch, B. Gundlach, M. Leboeuf, M. Dadras, J. Blum, and N. Thomas. Experimental characterization of the opposition surge in fine-grained water-ice and high albedo ice analogs. Icarus, 264:109–131, 1 2016. doi:10.1016/j.icarus.2015.09.020.

[185]

Ómar F. Sigurbjörnsson, George Firanescu, and Ruth Signorell. Intrinsic particle properties from vibrational spectra of aerosols. Annual Review of Physical Chemistry, 60:127–146, 5 2009. doi:10.1146/annurev.physchem.040808.090356.

[186]

Jaime Wisniak. James dewar, more than a flask. Indian Journal of Chemical Technology, 10:424–434, 2003.

[187]

Jing Guo, Richard Floyd, Sarah Lowum, Jon-Paul Maria, Thomas Herisson De Beauvoir, Joo-Hwan Seo, and Clive A Randall. Cold sintering: progress, challenges, and future opportunities. Annual Review of Materials Research, 2019. URL: https://doi.org/10.1146/annurev-matsci-070218-, doi:10.1146/annurev-matsci-070218.

[188]

B. Gundlach, J. Ratte, J. Blum, J. Oesert, and S. N. Gorb. Sintering and sublimation of micrometre-sized water-ice particles: the formation of surface crusts on icy solar system bodies. Monthly Notices of the Royal Astronomical Society, 479:5272–5287, 10 2018. doi:10.1093/mnras/sty1839.

[189]

D. T. Bowron, J. L. Finney, A. Hallbrucker, I. Kohl, T. Loerting, E. Mayer, and A. K. Soper. The local and intermediate range structures of the five amorphous ices at 80 k and ambient pressure: a faber-ziman and bhatia-thornton analysis. Journal of Chemical Physics, 2006. doi:10.1063/1.2378921.

[190]

H Wang, R C Bell, M J Iedema, A A Tsekouras, and J P Cowin. Sticky ice grains aid planet formation: unusual properties of cryogenic water ice. The Astrophysical Journal, 620:1027–1032, 2005.

[191]

missing booktitle in bachmann_improved_1971

[192]

P Briiggeller and E Mayer. Complete vitrification in pure liquid water and dilute aqueous solutions. J. A. J. Fluid. Mech, 288:76–80, 1980.

[193]

Hai Le, Yi Liu, and M. Sam Mannan. Lower flammability limits of hydrogen and light hydrocarbons at subatmospheric pressures. Industrial and Engineering Chemistry Research, 52:1372–1378, 1 2013. doi:10.1021/ie302504h.

[194]

P.H. Le Brun, A.H. de Boer, H.G.M. Heijerman, and H.W. Frijli. A review of the technical aspects of drug nebulization. Pharm World Sci, pages 75–81, 2000.